>>> Topological invariant of 4-manifolds based on a 3-group >>> 9th Tux Workshop on Quantum Gravity

Name: Tijana Radenković[†] (Institute of Physics Belgrade) Date: February 16, 2022 This research was supported by the Science Fund of the Republic of Serbia, No. 7745968 "Quantum Gravity from Higher Gauge Theory" (QGHG-2021).

[†]rtijana@ipb.ac.rs

>>> A sketch of the talk

- ▶ 3-group and 3-gauge theory
 - → based on R. Picken and J. Faria Martins, Diff. Geom. Appl. 29, 179 (2011), arXiv:0907.2566.
- ▶ 3BF action with constraints
 - → Models with relevant dynamics T. Radenković and M. Vojinović, J. High Energy Phys.10, 222 (2019), arXiv:1904.07566.
- ▶ Quantization of the topological 3BF theory
 - \rightarrow The construction of the state sum Z and a proof that the 3BF state sum is invariant under Pachner moves.
 - T. Radenković and M. Vojinović, arXiv: 2201.02572.
 - \hookrightarrow the state sum Z is an example of Porter's TQFT for d = 4 and n = 3T. Porter, J. Lond. Math. Soc. (2)58, No. 3, 723 (1998), MR 1678163.
- Pachner move invariance sketch of the proof
 - → This is a generalization of the state sum based on the classical 2BF action with the underlying 2-group structure F. Girelli, H. Pfeiffer and E. M. Popescu, Jour. Math. Phys. 49, 032503 (2008), arXiv:0708.3051.
- Conclusions

>>> 3-groups

2-crossed module
$$(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright, \{_, _\}_p)$$

- * Groups G, H, and L;
- * maps ∂ and δ ($\partial \delta = 1_G$);
- * an action \triangleright of the group G on all three groups;
- * a map $\{_,_\}_{\mathrm{p}}$ called the Peiffer lifting:

 $\{_,_\}_{\mathbf{p}}: H \times H \to L \,.$

Certain axioms hold true among all these maps:

- 1. $\delta(\{h_1, h_2\}_p) = \langle h_1, h_2 \rangle_p$, $\forall h_1, h_2 \in H$,
- 2. $[l_1, l_2] = \{\delta(l_1), \delta(l_2)\}_p$, $\forall l_1, l_2 \in L$. Here, the notation $[l, k] = lkl^{-1}k^{-1}$ is used;
- 3. $\{h_1h_2, h_3\}_{p} = \{h_1, h_2h_3h_2^{-1}\}_{p}\partial(h_1) \triangleright \{h_2, h_3\}_{p}, \quad \forall h_1, h_2, h_3 \in H;$
- 4. $\{h_1, h_2h_3\}_{\mathbf{p}} = \{h_1, h_2\}_{\mathbf{p}}\{h_1, h_3\}_{\mathbf{p}}\{\langle h_1, h_3 \rangle_{\mathbf{p}}^{-1}, \partial(h_1) \triangleright h_2\}_{\mathbf{p}}, \quad \forall h_1, h_2, h_3 \in H;$
- 5. $\{\delta(l),h\}_{p}\{h,\delta(l)\}_{p} = l(\partial(h) \triangleright l^{-1}), \quad \forall h \in H, \forall l \in L.$

^{[1.} C:\Program Files\Preliminaries\3-groups.dll]\$ _

>>> The 3BF theory

One can now generalize the notion of parallel transport from curves to surfaces and volumes.

* Given a 2-crossed module, one can define a <u>3-connection</u>, an ordered triple (α, β, γ) , where α , β , and γ are algebra-valued differential forms,

$$\begin{aligned} \alpha &= \alpha^{\alpha}{}_{\mu} \tau_{\alpha} \, \mathrm{d}x^{\mu} \,, & \alpha \in \mathcal{A}^{1}(\mathcal{M}_{4}, \mathfrak{g}) \,, \\ \beta &= \beta^{a}{}_{\mu\nu} t_{a} \, \mathrm{d}x^{\mu} \wedge \mathrm{d}x^{\nu} \,, & \beta \in \mathcal{A}^{2}(\mathcal{M}_{4}, \mathfrak{h}) \,, \\ \gamma &= \gamma^{A}{}_{\mu\nu\rho} T_{A} \, \mathrm{d}x^{\mu} \wedge \mathrm{d}x^{\nu} \wedge \mathrm{d}x^{\rho} \,, & \gamma \in \mathcal{A}^{3}(\mathcal{M}_{4}, \mathfrak{l}) \,. \end{aligned}$$

$$(1)$$

* Then introduce the line, surface and volume holonomies,

$$g = \mathcal{P} \exp \int_{\gamma} \alpha, \quad h = \mathcal{S} \exp \int_{S} \beta, \quad l = \mathcal{V} \exp \int_{V} \gamma.$$
 (2)

* The corresponding fake $3\text{-}curvature~(\mathcal{F},\mathcal{G},\mathcal{H})$ is defined as:

$$\mathcal{F} = \mathrm{d}\alpha + \alpha \wedge \alpha - \partial\beta, \qquad \mathcal{G} = \mathrm{d}\beta + \alpha \wedge^{\triangleright} \beta - \delta\gamma, \mathcal{H} = \mathrm{d}\gamma + \alpha \wedge^{\triangleright} \gamma + \{\beta \wedge \beta\}_{\mathrm{pf}}.$$
(3)

^{[2.} C:\Program Files\Preliminaries\3BF theory.dll]\$ _

>>> The 3BF theory

At this point one can construct the so-called 3BF theory.

* For a manifold \mathcal{M}_4 and the 2-crossed module $(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright, \{_, _\}_{\mathrm{pf}})$, that gives rise to 3-curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H})$, one defines the 3BF action as

$$S_{3BF} = \int_{\mathcal{M}_4} \langle B \wedge \mathcal{F} \rangle_{\mathfrak{g}} + \langle C \wedge \mathcal{G} \rangle_{\mathfrak{h}} + \langle D \wedge \mathcal{H} \rangle_{\mathfrak{l}} \,. \tag{4}$$

- * 3BF theory is a topological gauge theory,
- * it is based on the 3-group structure,
- it is a generalization of an ordinary BF theory for a given Lie group G.
- * The physical interpretation of the Lagrange multipliers C and D:
 - * the h-valued 1-form C can be interpreted as the tetrad field if if $H = \mathbb{R}^4$ is the spacetime translation group,

$$C \to e = e^a{}_\mu(x) t_a \mathrm{d}x^\mu \,, \tag{5}$$

* the I-valued 0-form D can be interpreted as the set of real-valued matter fields, given some Lie group L:

$$D \to \phi = \phi^A(x)T_A$$
. (6)

>>> Constrained 3BF action

* For a manifold \mathcal{M}_4 and the 2-crossed module $(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright, \{_, _\}_{\mathrm{pf}})$, that gives rise to 3-curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H})$, one defines the 3BF action as

$$S_{3BF} = \int_{\mathcal{M}_4} \langle B \wedge \mathcal{F} \rangle_{\mathfrak{g}} + \langle C \wedge \mathcal{G} \rangle_{\mathfrak{h}} + \langle D \wedge \mathcal{H} \rangle_{\mathfrak{l}} \,. \tag{7}$$

- * Physically relevant models The constrained 2BF actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained 3BF actions describing the Klein-Gordon, Dirac, Weyl and Majorana fields coupled to Yang-Mills fields and gravity in the standard way are formulated.
 - → T. Radenković and M. Vojinović, J. High Energy Phys.10, 222 (2019), arXiv:1904.07566.

st Curves are labeled with the elements of G, and the elements are composed as

* Surfaces are labeled with the elements $h \in H$. We split the boundary into two curves, the source curve $g_1 \in G$ and the target curve $g_2 \in G$,

so that the surface $h \in H$ satisfies:

$$\partial(h) = g_2 g_1^{-1}$$
 .

* Volumes are labeled with the elements $l \in L$. We split the boundary into the source surface $\partial_3^-(l) = h_1$ and the target surface $\partial_3^+(l) = h_2$, and the common boundary of h_1 and h_2 we split into the source curve $\partial_2^-(l) = g_1$ and the target curve $\partial_2^+(l) = g_2$,

[3. C:\Program Files\Preliminaries\3-gauge theory.dll]\$ _

* Vertical composition of 2-morphisms. One can compose 2-morphisms (g_1, h_1) and (g_2, h_2) vertically, when they are compatible, when $\partial_2^+(h_1) = \partial_2^-(h_2)$,

results in a 2-morphism (g_1, h_2h_1) , $(g_2, h_2)\#_2(g_1, h_1) = (g_1, h_2h_1).$ (8)

* Whiskering. One can whisker a 2-morphism h with a morphism g_1 by attaching the whisker g_1 to the surface h from the left, such that $\partial_1^-(g_1) = \partial_1^+(h)$,

One can whisker g_2 to a surface h from the right, such that $\partial_1^-(h) = \partial_1^+(g_2)$,

* Upward composition. The upward composition of 3-morphisms (g_1, h_1, l_1) and (g_1, h_2, l_2) , when they are compatible, when $\partial_3^+(l_1) = \partial_3^-(l_2)$,

 $(g_1, h_2, l_2) #_3(g_1, h_1, l_1) = (g_1, h_1, l_2 l_1).$ (9)

(10)

[9/36]

* Vertical composition. The vertical composition of two 3-morphisms (g_1, h_1, l_1) and (g_2, h_2, l_2) , when they are compatible, when $\partial_2^+(l_1) = \partial_2^-(l_2)$,

results in a 3-morphism $(g_1, h_2h_1, l_2(h_2 \triangleright' l_1))$,

 $(g_2, h_2, l_2) \#_2(g_1, h_1, l_1) = (g_1, h_2h_1, l_2(h_2 \triangleright' l_1)).$

[3. C:\Program Files\Preliminaries\3-gauge theory.dll]\$

* Whiskering of the 3-morphisms with morphisms. Whiskering of a 3-morphism by a morphism from the left is the composition of a volume $l \in L$ and curve $g_1 \in G$ from the left, when they are compatible, when $\partial_1^+(l) = \partial_1^-(g_1)$,

 $g_1 \#_1(g_2, h_1, l) = (g_1 g_2, g_1 \triangleright h, g_1 \triangleright l).$ (11)

One can whisker a 3-morphism by a morphism from the right, when they are compatible, $\partial_1^-(l)=\partial_1^+(g_2)$,

* Whiskering of 3-morphisms with 2-morphisms. Whiskering of a 3-morphism with a 2-morphisms from <u>below</u>, when they are compatible, $\partial_2^+(l) = \partial_2^-(h_2)$, is formed as a vertical composition of 3-morphisms (g_1, h_1, l) and $(g_2, h_2, 1_{h_2})$,

which results in a 3-morphism

 $(g_1, h_1, l) \#_2(g_2, h_2) = (g_1, h_2 h_1, h_2 \triangleright' l).$ (13)

* Whiskering a 3-morphism by 2-morphism from above, when they are compatible, when $\partial_2^-(l)=\partial_2^+(h_1)$,

results in a 3-morphism,

 $(g_1, h_1) \#_2(g_2, h_2, l) = (g_1, h_2 h_1, l).$ (14)

* The interchanging 3-arrow. The horizontal composition of two 2-morphisms h_1 and h_2 , when they are compatible, when $\partial_1^-(h_1) = \partial_1^+(h_2)$,

that results in a 3-morphism l, with source surface

 $\partial_3^-(l) = \left((g_1, h_1) \#_1 g_2' \right) \#_2 \left(g_1 \#_1(g_2, h_2) \right),$

and target surface

$$\partial_3^+(l) = (g_1' \#_1(g_2, h_2)) \#_2((g_1, h_1) \#_1 g_2),$$

Lemma (1)

Let us consider a triangle, $(jk\ell)$. The edges (jk), j < k, are labeled by group elements $g_{jk} \in G$ and the triangle $(jk\ell), j < k < \ell$, by element $h_{jk\ell} \in H$.

The curve $\gamma_1 = g_{k\ell}g_{jk}$ is the source and the curve $\gamma_2 = g_{j\ell}$ is the target of the surface morphism $\Sigma: \gamma_1 \to \gamma_2$, labeled by the group element $h_{jk\ell}$,

$$g_{j\ell} = \partial(h_{jk\ell})g_{k\ell}g_{jk} \,. \tag{17}$$

Lemma (2) Let us consider a tetrahedron, $(jk\ell m)$.

 $= (g_{\ell m} g_{j\ell}, h_{j\ell m}) \#_2 (g_{\ell m} \#_1 (g_{k\ell} g_{jk}, h_{jk\ell})) = (g_{\ell m} g_{k\ell} g_{jk}, h_{j\ell m} (g_{\ell m} \triangleright h_{jk\ell})).$ (18)

Moving from surface shown on the diagram (18) to the surface shown on the diagram (19) is determined by the group element $l_{ik\ell m}$,

$$h_{jkm}h_{k\ell m} = \delta(l_{jk\ell m})h_{j\ell m}(g_{\ell m} \triangleright h_{jk\ell}).$$
⁽²⁰⁾
^{3-gauge theory,dlls}

[3. C:\Program Files\Preliminaries\3-gauge theory.dll]\$ _

Lemma (3)

We consider a 4-simplex, $(jk\ell mn)$. We cut the 4-simplex volume along the surface

- * We move the surface from $h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell}$ to $h_{jkm}h_{k\ell m}$ with the 3-arrow $l_{jk\ell m}.$
- st To compose the resulting 3-morphism with surface h_{jmn} one must first whisker it from the left with q_{mn} .
- * The obtained 3-morphism $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell}),g_{mn} \triangleright l_{jk\ell m})$ can be whiskered from below with the 2-morphism $(g_{mn}g_{jm},h_{jmn})$.
- * The resulting 3-morphism is

 $\Sigma_1 \to \Sigma_2$, $\Sigma_1 = h_{jmn}g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell})$ and $\Sigma_2 = h_{jmn}g_{mn} \triangleright (h_{jkm}h_{k\ell m})$.

[3. C:\Program Files\Preliminaries\3-gauge theory.dll]\$ _

Lemma (3)

Step 2

Let us move the surface to $h_{jkn}h_{kmn}g_{m\ell} \triangleright h_{k\ell m}$.

- * We consider the 3-morphism $(g_{mn}g_{km}g_{jk}, h_{jmn}g_{mn} \triangleright h_{jkm}, l_{jkmn})$ with the source surface $h_{jmn}g_{mn} \triangleright h_{jkm}$ and target surface $h_{jkn}h_{kmn}$.
- * This 3-morphism can be whiskered from above with the 2-morphism $(g_{mn}g_{\ell l}g_{k\ell}g_{jk},g_{mn} \triangleright h_{k\ell m}).$
- * The obtained 3-morphism is

 $(g_{mn}g_{\ell m}g_{k\ell}g_{jk}, h_{jmn}g_{mn} \triangleright (h_{jkm}h_{k\ell m}), l_{jkmn})$

 $\Sigma_1 \to \Sigma_2$, $\Sigma_1 = h_{jmn}g_{mn} \triangleright (h_{jkm}h_{k\ell m})$ and $\Sigma_2 = h_{jkn}h_{kmn}g_{mn} \triangleright h_{k\ell m}$.

Lemma (3)

Step 3

Next, we want to move the surface $h_{jkn}h_{kmn}g_{mn} \triangleright h_{k\ell m}$ to surface $h_{jkn}h_{k\ell n}h_{\ell mn}$.

- * We whisker the 3-morphism $(g_{mn}g_{\ell m}g_{k\ell}, h_{kmn}g_{mn} \triangleright h_{k\ell m}, l_{k\ell mn})$, with the source surface $h_{kmn}g_{mn} \triangleright h_{k\ell m}$ and target surface $h_{k\ell n}h_{\ell mn}$, with the morphism g_{jk} from the right.
- * The obtained the 3-morphism $(g_{mn}g_{\ell m}g_{k\ell}g_{jk}, h_{kmn}g_{mn} \triangleright h_{k\ell m}, l_{k\ell mn})$ we whisker with the 2-morphism $(g_{kn}g_{jk}, h_{jkn})$ from below.
- * We obtain the 3-morphism

 $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{jkn}h_{kmn}g_{mn} \triangleright h_{k\ell m},h_{jkn} \triangleright' l_{k\ell mn})$

 $\Sigma_1 \to \Sigma_2 \text{, } \Sigma_1 = h_{jkn} h_{kmn} g_{mn} \triangleright h_{k\ell m} \text{ and } \Sigma_2 = h_{jkn} h_{k\ell n} h_{\ell mn} \text{.}$

Lemma (3)

Step 4

We map the surface $h_{jkn}h_{k\ell n}h_{\ell mn}$ to the surface $h_{j\ell n}g_{\ell n} \triangleright h_{jk\ell}h_{\ell mn}$.

- * The 3-morphism with the appropriate source and target is constructed by whiskering the 3-morphism $(g_{\ell n}g_{k\ell}g_{jk},h_{jkn}h_{k\ell n},l_{jk\ell n}^{-1})$ with 2-morphism $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{\ell mn})$ from above.
- * The obtained 3-morphism is

 $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{jkn}h_{k\ell n}h_{\ell m n},l_{jk\ell n}^{-1})$

 $\Sigma_1 \to \Sigma_2$, $\Sigma_1 = h_{jkn} h_{k\ell n} h_{\ell m n}$ and $\Sigma_2 = h_{j\ell n} g_{\ell n} \triangleright h_{jk\ell} h_{\ell m n}$.

Lemma (3)

Step 5

Next we map the surface $h_{j\ell n}g_{\ell n} \triangleright h_{jk\ell}h_{\ell m n}$ to the surface $h_{j\ell n}h_{\ell m n}(g_{mn}g_{\ell m}) \triangleright h_{jk\ell}$.

- * We use the inverse interchanging 2-arrow composition to map the surface $g_{\ell n} \triangleright h_{jk\ell} h_{\ell m n}$ to the surface $h_{\ell m n}(g_{mn}g_{\ell m}) \triangleright h_{jk\ell}$, resulting in the 3-morphism $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},g_{\ell n} \triangleright h_{jk\ell} h_{\ell m n}, \{h_{\ell m n}, (g_{mn}g_{\ell m}) \triangleright h_{jk\ell}\}_{p}).$
- * Next, we whisker the obtained 3-morphism with the 2-morphism $(g_{\ell n}g_{j\ell},h_{j\ell n})$ from below.
- st The obtained 3-morphism with the appropriate source and target surfaces is

 $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{j\ell n}g_{\ell n} \triangleright h_{jk\ell}h_{\ell m n},h_{j\ell n} \triangleright' \{h_{\ell m n},(g_{mn}g_{\ell m}) \triangleright h_{jk\ell}\}_{\mathbf{p}})$

 $\Sigma_1 \to \Sigma_2$, $\Sigma_1 = h_{j\ell n} g_{\ell n} \triangleright h_{jk\ell} h_{\ell m n}$ and $\Sigma_2 = h_{j\ell n} h_{\ell m n} (g_{mn} g_{\ell m}) \triangleright h_{jk\ell}$.

Lemma (3)

Step 6

Finally, we construct the 3-morphism that maps the surface $h_{j\ell n}h_{\ell m n}(g_{mn}g_{\ell m}) \triangleright h_{jk\ell}$ to the starting surface $h_{jmn}g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell})$.

- * To obtain the 3-morphism with the appropriate source and target surfaces we first move the surface $h_{j\ell n}h_{\ell m n}$ to the surface $h_{jmn}g_{mn} \triangleright h_{j\ell m}$ with the 3-arrow $(g_{mn}g_{\ell m}g_{j\ell},h_{j\ell n}h_{\ell m n},l_{j\ell m n}^{-1})$.
- * Next, we whisker the 3-morphism $(g_{mn}g_{\ell m}g_{j\ell}, h_{j\ell n}h_{\ell m n}, l_{j\ell m n}^{-1})$ with the 2-morphism $(g_{mn}g_{\ell m}g_{k\ell}g_{jk}, (g_{mn}g_{\ell m}) \triangleright h_{jk\ell})$ from above.
- * The obtained 3-morphism

 $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{j\ell n}h_{\ell mn}(g_{mn}g_{\ell m}) \triangleright h_{jk\ell},l_{j\ell mn}^{-1})$

 $\Sigma_1 \to \Sigma_2, \ \Sigma_1 = h_{j\ell n} h_{\ell m n}(g_{mn}g_{\ell m}) \triangleright h_{jk\ell} \text{ and } \Sigma_2 = h_{jmn}g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell}).$

Lemma (3)

Lemma (3)

After the upward composition of the 3-morphisms given by the diagrams (21)-(26), the obtained 3-morphism is:

 $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{j\ell n}h_{\ell mn}(g_{mn}g_{\ell m}) \triangleright h_{jk\ell},l_{j\ell mn}^{-1})\#_{3}$ $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},g_{\ell n} \triangleright h_{jk\ell}h_{\ell mn},h_{j\ell n} \triangleright' \{h_{\ell mn},(g_{mn}g_{\ell m}) \triangleright h_{jk\ell}\}_{p})\#_{3}$ $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{jkn}h_{k\ell n}h_{\ell mn},l_{jk\ell n}^{-1})\#_{3}$ $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{jkn}h_{kmn}g_{m\ell} \triangleright h_{k\ell m},h_{jkn} \triangleright' l_{jkmn})\#_{3}$ $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{jmn}g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell}),h_{jmn} \triangleright' (g_{mn} \triangleright l_{jk\ell m}))\#_{3}$ $(g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{jmn}g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell}),h_{jmn} \triangleright' (g_{mn} \triangleright l_{jk\ell m}))$ $f_{g_{mn}g_{\ell m}g_{k\ell}g_{jk},h_{jmn}g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell}),l_{j\ell mn}h_{j\ell n} \triangleright' (g_{mn} \triangleright l_{jk\ell m}))$ (27)

The obtained 3-morphism is the identity morphism with source and target surface $\mathcal{V}_1 = \mathcal{V}_2 = h_{jmn}g_{mn} \triangleright (h_{j\ell m}g_{\ell m} \triangleright h_{jk\ell})$,

 $l_{j\ell m n}^{-1} h_{j\ell n} \triangleright' \{h_{\ell m n}, (g_{m n} g_{\ell m}) \triangleright h_{jk\ell}\}_{\mathbf{p}} l_{jk\ell n}^{-1} (h_{jkn} \triangleright' l_{k\ell m n}) l_{jkm n} h_{jm n} \triangleright' (g_{m n} \triangleright l_{jk\ell m}) = e.$ (28)

^{[3.} C:\Program Files\Preliminaries\3-gauge theory.dll]\$ _

>>> Quantization of the topological 3BF theory

We want to construct a state sum model from the classical S_{3BF} action by the usual spinfoam quantization procedure.

$$Z = \int \mathcal{D}\alpha \, \mathcal{D}\beta \, \mathcal{D}\gamma \, \mathcal{D}B \, \mathcal{D}C \, \mathcal{D}D \, \exp\left(i \int_{M_4} \langle B \wedge \mathcal{F} \rangle_{\mathfrak{g}} + \langle C \wedge \mathcal{G} \rangle_{\mathfrak{h}} + \langle D \wedge \mathcal{H} \rangle_{\mathfrak{l}}\right).$$
⁽²⁹⁾

 \hookrightarrow The formal integration over the Lagrange multipliers B, C, and D leads to:

$$Z = \mathcal{N} \int \mathcal{D}\alpha \mathcal{D}\beta \mathcal{D}\gamma \ \delta(\mathcal{F})\delta(\mathcal{G})\delta(\mathcal{H}).$$
(30)

 $\begin{array}{l} \hookrightarrow \text{ Discretization of the } 3\text{-connection:} \\ \bullet \ \alpha \in \mathcal{A}^1(\mathcal{M}_4, \mathfrak{g}) \ \mapsto \ g_\epsilon \in G \ \text{coloring the edges } \epsilon = (jk) \in \Lambda_1, \\ \bullet \ \beta \in \mathcal{A}^2(\mathcal{M}_4, \mathfrak{h}) \ \mapsto \ h_\Delta \in H \ \text{coloring the triangles } \Delta = (jk\ell) \in \Lambda_2, \\ \bullet \ \gamma \in \mathcal{A}^3(\mathcal{M}_4, \mathfrak{l}) \ \mapsto \ l_\tau \in L \ \text{coloring the tetrahedrons } \tau = (jk\ell m) \in \Lambda_3. \end{array}$

$$\begin{cases} \mathcal{D}\alpha & \mapsto & \prod_{(jk)\in\Lambda_1} \int_G dg_{jk} \\ \int \mathcal{D}\beta & \mapsto & \prod_{(jk\ell)\in\Lambda_2} \int_H dh_{jk\ell} \\ \int \mathcal{D}\gamma & \mapsto & \prod_{(jk\ell m)\in\Lambda_3} \int_L dl_{jk\ell m} \end{cases}$$
 \longrightarrow The disretization of path integral measures.

[4. C:\Program Files\Quantization of the topological 3BF theory.dll]\$ _

>>> Quantization of the toplogical 3BF theory

The condition $\delta(\mathcal{F})$ is disretized as $\delta(\mathcal{F}) = \prod_{(jk\ell)\in\Lambda_2} \delta_G(g_{jk\ell}), \qquad \delta_G(g_{jk\ell}) = \delta_G\left(\partial(h_{jk\ell}) g_{k\ell} g_{jk} g_{j\ell}^{-1}\right). \tag{31}$

 \hookrightarrow The condition $\delta(\mathcal{G})$ on the fake curvature 3-form reads

$$\delta(\mathcal{G}) = \prod_{(jk\ell m)\in\Lambda_3} \delta_H(h_{jk\ell m}), \qquad (32)$$

$$\delta_H(h_{jk\ell m}) = \delta_H\left(\delta(l_{jk\ell m})h_{j\ell m} \left(g_{\ell m} \triangleright h_{jk\ell}\right)h_{k\ell m}^{-1}h_{jkm}^{-1}\right). \tag{33}$$

 \hookrightarrow The condition $\delta(\mathcal{H})$ is disretized as

$$\delta(\mathcal{H}) = \prod_{(jk\ell mn)\in\Lambda_4} \delta_L(l_{jk\ell mn}), \qquad (34)$$

 $\delta_{L}(l_{jk\ell mn}) = \delta_{L}\left(l_{j\ell mn}^{-1} h_{j\ell n} \triangleright' \left\{h_{\ell mn}, (g_{mn}g_{\ell m}) \triangleright h_{jk\ell}\right\} \mathop{\mathrm{p}} l_{jk\ell n}^{-1} (h_{jkn} \triangleright' l_{k\ell mn}) l_{jkmn} h_{jmn} \triangleright' (g_{mn} \triangleright l_{jk\ell m})\right).$ (35)

 \dots all off this \implies

$$Z = \mathcal{N} \prod_{(jk)\in\Lambda_1} \int_G dg_{jk} \prod_{(jk\ell)\in\Lambda_2} \int_H dh_{jk\ell} \prod_{(jk\ell m)\in\Lambda_3} \int_L dl_{jk\ell m} \left(\prod_{(jk\ell)\in\Lambda_2} \delta_G(g_{jk\ell})\right) \left(\prod_{(jk\ell m)\in\Lambda_3} \delta_H(h_{jk\ell m})\right) \left(\prod_{(jk\ell mn)\in\Lambda_4} \delta_L(l_{jk\ell mn})\right).$$
(36)
This expression can be made independent of the triangulation if one appropriately

[4. C:\Program Files\Quantization of the topological 3BF theory.dll]\$ _

Definition

Let \mathcal{M}_4 be a compact and oriented combinatorial 4-manifold, and $(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright, \{_, _\}_{\mathrm{pf}})$ be a 2-crossed module. The state sum of topological higher gauge theory is defined by

$$Z = |G|^{-|\Lambda_{0}|+|\Lambda_{1}|-|\Lambda_{2}|}|H|^{|\Lambda_{0}|-|\Lambda_{1}|+|\Lambda_{2}|-|\Lambda_{3}|}|L|^{-|\Lambda_{0}|+|\Lambda_{1}|-|\Lambda_{2}|+|\Lambda_{3}|-|\Lambda_{4}|} \times \left(\prod_{(jk\ell)\in\Lambda_{1}}\int_{G} dg_{jk}\right) \left(\prod_{(jk\ell)\in\Lambda_{2}}\int_{H} dh_{jk\ell}\right) \left(\prod_{(jk\ell)\in\Lambda_{3}}\int_{L} dl_{jk\ell m}\right) \times \left(\prod_{(jk\ell)\in\Lambda_{2}}\delta_{G}(\partial(h_{jk\ell})g_{k\ell}g_{jk}g_{j\ell}^{-1})\right) \left(\prod_{(jk\ellm)\in\Lambda_{3}}\delta_{H}(\delta(l_{jk\ellm})h_{j\ell m}(g_{\ell m} \triangleright h_{jk\ell})h_{k\ell m}^{-1}h_{jkm}^{-1})\right) \times \left(\prod_{(jk\ell_{mn})\in\Lambda_{4}}\delta_{L}\left(l_{j\ell mn}^{-1}h_{j\ell n} \triangleright' \{h_{\ell mn}, (g_{mn}g_{\ell m}) \triangleright h_{jk\ell}\}_{P}l_{jk\ell n}^{-1}(h_{jkn} \triangleright' l_{k\ell mn})l_{jkmn}h_{jmn} \triangleright' (g_{mn} \triangleright l_{jk\ell m})\right)\right).$$
(37)

Here $|\Lambda_0|$ denotes the number of vertices, $|\Lambda_1|$ edges, $|\Lambda_2|$ triangles, $|\Lambda_3|$ tetrahedrons, and $|\Lambda_4|$ 4-simplices of the triangulation.

↔ T. Radenković and M. Vojinović, arXiv: 2201.02572.

[4. C:\Program Files\Quantization of the topological 3BF theory.dll]\$ _

>>> $1 \leftrightarrow 5$ Pachner move

 $1 \leftrightarrow 5$

	1.h.s.	r.h.s
MC		(1)
M ₁		(12), (13), (14), (15), (16)
M2		(123), (124), (125), (126), (134), (135), (136), (145), (146), (156)
Ma	:	(1234), (1235), (1236), (1245), (1246), (1256), (1345), (1346), (1356), (1456)
M4	(23456)	(13456), (12456), (12356), (12346), (12345)

>>> $1 \leftrightarrow 5$ Pachner move

	$ \Lambda_0 $	$ \Lambda_1 $	$ \Lambda_2 $	$ \Lambda_3 $	$ \Lambda_4 $
l.h.s.	5	10	10	5	1
r.h.s.	6	15	20	15	5

Right side

$$\begin{aligned} Z_{\text{right}}^{1-\epsilon_{5}} &= |G|^{-11} |H|^{-4} |L|^{-1} \int_{G^{5}} \prod_{(jk) \in M_{1}} dg_{jk} \int_{H^{10}} \prod_{(jk\ell) \in M_{2}} dh_{jk\ell} \int_{L^{10}} \prod_{(jklm) \in M_{3}} dl_{jklm} \\ &\cdot \left(\prod_{(jk\ell) \in M_{2}} \delta_{G}(g_{jk\ell})\right) \left(\prod_{(jk\ellm) \in M_{3}} \delta_{H}(h_{jk\ellm})\right) \left(\prod_{(jk\ellmn) \in M_{4}} \delta_{L}(l_{jk\ellmn})\right) Z_{\text{remainder}}, \end{aligned}$$
(38)

Left side

$$Z_{\text{left}}^{1 \leftrightarrow 5} = |G|^{-5} |H|^0 |L|^{-1} \delta_L(l_{23456}) Z_{\text{remainder}} \,.$$
(39)

The $Z_{\text{remainder}}$ denotes the part of the state sum that is the same on both sides of the move, and thus irrelevant for the proof of invariance.

>>> $2 \leftrightarrow 4$ Pachner move

 $(1) \underbrace{(2) \quad (3)}_{(4) \quad (5)} (6)$

 $2 \leftrightarrow 4$

>>> $2 \leftrightarrow 4$ Pachner move

	$ \Lambda_0 $	$ \Lambda_1 $	$ \Lambda_2 $	$ \Lambda_3 $	$ \Lambda_4 $
l.h.s.	6	14	16	9	2
r.h.s.	6	15	20	14	4

Right side

$$Z_{left}^{2\leftrightarrow4} = |G|^{-8}|H|^{-1}|L|^{-1}\int_{L} dl_{2345}\delta_{H}(h_{2345}) \left(\prod_{(jk\ell mn)\in M_{4}}\delta_{L}(l_{jk\ell mn})\right) Z_{\text{remainder}},$$
(40)

Left side

$$Z_{right}^{2 \to 4} = |G|^{-11} |H|^{-3} |L|^{-1} \int_{G} dg_{16} \int_{H^4} dh_{126} dh_{136} dh_{146} dh_{156} \int_{L} dl_{1236} dl_{1246} dl_{1256} dl_{1346} dl_{1356} dl_{1456} dl$$

>>> Proof of $2 \leftrightarrow 4$ Pachner move invariance

* On the *left hand side of the move* one has the following integrals and the integrand,

$$\int_{I} dl_{2345} \delta_H(h_{2345}) \delta_L(l_{23456}) \delta_L(l_{12345}).$$
(42)

We integrate out l_{2345} using $\delta_L(l_{12345}).$ The δ -function $\delta_H(h_{2345})$ now reads,

$$\delta_H(h_{2345}) = \delta_H(e). \tag{43}$$

The remaining δ -function $\delta_L(l_{23456})$, reads

 $\delta_{L}(l_{23456}) = \delta_{L}\left(l_{2456}^{-1}l_{2346}^{-1}l_{2356}(h_{256}g_{56} \triangleright h_{125}^{-1}) \flat' g_{56} \triangleright l_{1235}(h_{256}g_{56} \triangleright h_{125}^{-1}g_{56} \triangleright h_{135}) \flat' \left((g_{35} \triangleright h_{123}h_{356}^{-1}) \flat' l_{3456}\right) \{g_{56} \triangleright h_{345}, (g_{56}g_{45}g_{34}) \triangleright h_{123}\}_{p}^{-1}(g_{56} \triangleright h_{345}(g_{56}g_{45}) \triangleright (h_{123}h_{234}^{-1})h_{456}^{-1}) \flat' \left(h_{456}, (g_{56}g_{45}) \triangleright h_{234}\right)_{p}\right)(h_{256}g_{56} \triangleright h_{125}^{-1}) \flat' g_{56} \triangleright l_{1345} \left(h_{256}g_{56} \triangleright h_{125}^{-1}g_{56} \triangleright h_{145}\right) \flat' ((g_{56}g_{45}) \triangleright l_{1234})^{-1}(h_{256}g_{56} \triangleright h_{125}^{-1}) \flat' g_{56} \triangleright l_{1245}\right).$ (424)

Finally, the l.h.s. reads:

$$l.h.s. = \delta_H(e)\delta_L(l_{23456}) = |H|\delta_L(l_{23456})|.$$
(45)

>>> Proof of $2 \leftrightarrow 4$ Pachner move invariance

* On the right hand side of the move there is the integral

$$\int_{G} dg_{16} \int_{H^{4}} dh_{126} dh_{136} dh_{146} dh_{156} \int_{L} dl_{1236} dl_{1246} dl_{1256} dl_{1346} dl_{1356} dl_{1456} \left(\prod_{(jk\ell)\in M_{2}} \delta_{G}(g_{jk\ell})\right) \left(\prod_{(jk\ell m)\in M_{3}} \delta_{H}(h_{jk\ell m})\right) \left(\prod_{(jk\ell mn)\in M_{4}} \delta_{L}(l_{jk\ell mn})\right).$$

$$(46)$$

- * One integrates out g_{16} using $\delta_G(g_{126})$, h_{126} using $\delta_H(h_{1236})$, h_{136} using $\delta_H(h_{1346})$, and h_{146} using $\delta_H(h_{1456})$.
- * One integrates out l_{1236} using $\delta_L(l_{12346})$, l_{1246} using $\delta_L(l_{12456})$, l_{1346} using $\delta_L(l_{13456})$.
- * The remaining δ -functions on the group G reduces to $\delta_G(e)^3$,

$$\delta_G(g_{136}) = \delta_G(g_{146}) = \delta_G(g_{156}) = \delta_G(e).$$

* One obtains that the remaining δ -functions on H reduce on $\delta_{H}(e)^{3}$,

$$\delta_H(h_{1256}) = \delta_H(h_{1356}) = \delta_H(h_{1456}) = \delta_H(e).$$

>>> Proof of $2 \leftrightarrow 4$ Pachner move invariance

* For the remaining δ -function $\delta_L(l_{12356})$,

 $l_{12356}) = \delta_L \left(l_{2456}^{-1} l_{2346}^{-1} l_{2356} (h_{256} g_{56} \triangleright h_{125}^{-1}) \triangleright' g_{56} \triangleright l_{1235} (h_{256} g_{56} \triangleright h_{125}^{-1} g_{56} \triangleright h_{135}) \triangleright' \right)$

 $\left((g_{35} \triangleright h_{123}h_{356}^{-1}) \triangleright' l_{3456}\right) \{g_{56} \triangleright h_{345}, (g_{56}g_{45}g_{34}) \triangleright h_{123}\}_{p}^{-1} (g_{56} \triangleright h_{345}(g_{56}g_{45}) \triangleright (h_{123}h_{234}^{-1})h_{456}^{-1}) \triangleright' h_{123} = 0$

 ${h_{456}, (g_{56}g_{45}) \triangleright h_{234}}_{p}(h_{256}g_{56} \triangleright h_{125}^{-1}) \triangleright' g_{56} \triangleright l_{1345}$

$$(h_{256g56} \triangleright h_{125}^{-1}g_{56} \triangleright h_{145}) \triangleright' ((g_{56}g_{45}) \triangleright l_{1234})^{-1} (h_{256}g_{56} \triangleright h_{125}^{-1}) \triangleright' g_{56} \triangleright l_{1245}^{-1}).$$

$$(47)$$

which is precisely the equation (44). The remaining integration over the element h_{156} H and remaining integrations over the three elements l_{1246} , l_{1256} , and l_{1356} , are trivial, yielding the result of the r.h.s. to:

$$r.h.s. = \delta_G(e)^3 \,\delta_H(e)^3 \,\delta_L(l_{12356}) = |G|^3 \,|H|^3 \,\delta_L(l_{12356}) \,\left|. \tag{48}\right.$$

The prefactors are $|G|^{-8}|H|^{-1}|L|^{-1}$ on the l.h.s., and $|G|^{-11}|H|^{-3}|L|^{-1}$ on the r.h.s. compensate for the left-over factors.

[5. C:\Program Files\Pachner moves.dll]\$ _

<u>`</u>			<u> </u>	<u> </u>	<u>``</u>
(2345)	56), (134	156), (12	2456)		(12356

		l.h.s.		r.h.s
Mo				
M_1				
\mathtt{M}_2		(456)		(123)
M_3		(1456), (2456), (3456)		(1234), (1235), (1236)
M_4		(23456), (13456), (12456)	Ι	(12356), (12346), (12345).

 $3 \leftrightarrow 3$

>>> $3 \leftrightarrow 3$ Pachner move

Left side

 $Z_{left}^{3\leftrightarrow3} = \int_{H} dh_{456} \int_{L^3} dl_{1456} dl_{2456} dl_{3456} \delta_G(g_{456}) \delta_H(h_{3456}) \delta_H(h_{2456}) \delta_H(h_{1456}) \delta_L(l_{23456}) \delta_L(l_{13456}) \delta_L(l_{12456}) Z_{\text{remainder}},$ (49)

Right side

 $Z_{right}^{3\leftrightarrow3} = \int_{H} dh_{123} \int_{L^3} dl_{1234} dl_{1235} dl_{1236} \delta_G(g_{123}) \,\delta_H(h_{1234}) \delta_H(h_{1235}) \delta_H(h_{1236}) \delta_L(l_{12356}) \delta_L(l_{12346}) \delta_L(l_{12345}) Z_{remainder} \,.$ (50)

>>> Synopsis

- * 2-crossed modules and 3-gauge theory
- * Physically relevant models -The constrained 2BF actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained 3BF actions describing the Klein-Gordon, Dirac, Weyl and Majorana fields coupled to Yang-Mills fields and gravity in the standard way.
- * Starting from the notion of Lie 3-groups, we generalize the integral picture of gauge theory to a 3-gauge theory that involves curves, surfaces, and volumes labeled with elements of non-Abelian groups.
- * The definition of the discrete state sum model of topological higher gauge theory in dimension d=4.
- * We prove that the state sum is well defined, i.e., invariant under the Pachner moves and thus independent of the chosen triangulation.

>>> Synopsis

- * 2-crossed modules and 3-gauge theory
- * Physically relevant models -The constrained 2BF actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained 3BF actions describing the Klein-Gordon, Dirac, Weyl and Majorana fields coupled to Yang-Mills fields and gravity in the standard way.
- * Starting from the notion of Lie 3-groups, we generalize the integral picture of gauge theory to a 3-gauge theory that involves curves, surfaces, and volumes labeled with elements of non-Abelian groups.
- * The definition of the discrete state sum model of topological higher gauge theory in dimension d=4.
- * We prove that the state sum is well defined, i.e., invariant under the Pachner moves and thus independent of the chosen triangulation.

Thank you for your attention!

[7. D:\Downloads\Synopsis.flac]\$ _