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INTRODUCTION

A short recap of the spinfoam quantization method:

• Step 1: Rewrite the GR action — as a topological BF theory plus simplicity constraint,

SPlebanski[B,ω, φ] =

∫
M4

〈B ∧ F (ω)〉g + 〈φ(B ∧B)〉g ,

where the Lie group G is Lorentz-like, and g is its Lie algebra.
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• Step 1: Rewrite the GR action. . .

• Step 2: Quantize the topological sector. . .

• Step 3: Impose the simplicity constraint. . .

Key question — how to add matter fields into the above?

Main problems:

• Tetrads are absent!! — no way to couple matter to gravity.

• Action for matter is not in the form “BF plus constraints” — no way to construct ZBF .

• No Lie group “G” for matter fields — cannot use reps as colors.

Solution — employ categorical ladder and higher gauge theory!

Use HGT to generalize:

• a group to an n-group,

• a BF action to an nBF action.



HIGHER CATEGORY THEORY

A flash introduction to higher category theory:

• An n-category is a set of objects with:

– morphisms (maps between objects),

– 2-morphisms (maps between morphisms),

– 3-morphisms (maps between 2-morphisms), . . . up to n-morphisms,

along with certain axioms to provide suitable rules for composition, associativity, etc.
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• An n-group is a special case of an n-category, which has only one object, and all morphisms
are invertible.

A more detailed introduction to higher category theory:

⇒ look up “An Invitation to Higher Gauge Theory” [Baez, Huerta (2011)]

The purpose of n-groups (for physicists):

⇒ more fine-grained description of symmetry using an n-group, than using a group,

⇒ generalization of differential geometry: parallel transport, connection, holonomy, curvature.
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( L
δ→ H

∂→ G , . , { , } )

• L, H, G — Lie groups,
• δ, ∂ — boundary morphisms,
• . — action of G, . : G×G→ G, . : G×H → H, . : G× L→ L,
• { , } — Peiffer lifting, { , } : H ×H → L.

Axioms that hold among these maps:

Chain complex: ∂δ = 1G,

Conjugation: g . g0 = g g0 g
−1,

G-equivariance of ∂ and δ: g . ∂h = ∂(g . h) , g . δl = δ(g . l),

G-equivariance of lifting: g . {h1, h2} = {g . h1, g . h2},
Peiffer commutator: δ {h1, h2} = h1h2h

−1
1 (∂h1) . h

−1
2 ,

L-commutator: {δl1, δl2} = l1l2l
−1
1 l−1

2 ,

δ-lifting relation: {δl, h} {h, δl} = l(∂h . l−1),

Left product rule: {h1h2, h3} = {h1, h2h3h
−1
2 } ∂h1 . {h2, h3}.
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Purpose of all this — to generalize the notion of parallel transport, from curves to
surfaces to volumes:

• Connection generalized to a 3-connection (α, β, γ), a triple of algebra-valued differential
forms:

α = ααµ(x) τα ⊗ dxµ ∈ g⊗ Λ1(M) ,

β = 1
2 β

a
µν(x) ta ⊗ dxµ ∧ dxν ∈ h⊗ Λ2(M) ,

γ = 1
3! γ

A
µνρ(x) TA ⊗ dxµ ∧ dxν ∧ dxρ ∈ l⊗ Λ3(M) .
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• Line holonomy generalized to surface and volume holonomies:

g = Pexp

∫
P1

α , h = Sexp
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S2
β , l = Vexp

∫
V3
γ .

• Ordinary curvature generalized to 3-curvature (F ,G,H), where:

F = dα + α ∧ α− ∂β ,
G = dβ + α ∧. β − δγ ,
H = dγ + α ∧. γ − {β ∧ β} .
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At this point one can construct the action for a higher gauge theory:

S3BF =

∫
M4

〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l .

⇒ Topological 3BF theory, based on the 3-group ( L
δ→ H

∂→ G , . , { , } ).

The physical interpretation of the Lagrange multipliers C and D:

• for H = R4, multiplier C can be interpreted as the tetrad 1-form:

C → e = eaµ(x) ta ⊗ dxµ , [Miković, MV (2012)]

• for given L, multiplier D can be interpreted as the set of matter fields:

D → φ = φA(x)TA . [Radenković, MV (2019)]

⇒ The action thus becomes:

S3BF =

∫
M4

〈B ∧ F〉g + 〈e ∧ G〉h + 〈φ ∧H〉l .
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= 16

spinors
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×

×3 families × 4
real-valued components

spinor
= 192 real-valued components φA .

The Higgs sector gives us:(
φ+

φ0

)}
= 2 complex scalar fields = 4 real-valued components φA .

This suggests the structure for L in the form:

L = Lfermion × LHiggs , dimLfermion = 192 , dimLHiggs = 4 .
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• Choose the group G = SO(3, 1) × SU(3) × SU(2) × U(1). Then, for example, given any
g ∈ G and a doublet (

ub
db

)
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,

the action g . ub encodes that ub consists of 4 real-valued fields which transform as:

– a left-handed spinor wrt. SO(3, 1),

– as a “blue” component of the fundamental representation of SU(3),

– and as “isospin +1
2” of the left doublet wrt. SU(2)× U(1).

• Moreover, G acts in the same way across families, suggesting the structure

Lfermion = L1st family × L2nd family × L3rd family , dimLk-th family = 64 .

• Next choose the group H = R4. The action . of G on H is via vector representation for the
SO(3, 1) part and via trivial representation for the SU(3)× SU(2)× U(1) part.
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The other maps in the 3-group are chosen to be trivial:

• For all l ∈ L and ~u,~v ∈ H, we define

δl = 1H = 0 , ∂~v = 1G , {~u,~v} = 1L .

• In order to satisfy all axioms of a 3-group, the group L must be Abelian (the L-commutator
axiom). Thus, given the Abelian nature and dimensionality of L, the simplest choices for
its component groups are

LHiggs = R4(C) , Lfermion family = R64(G) ,

where G is the Grassmann algebra.

The Standard Model 3-group is thus specified with the choice:

G = SO(3, 1)× SU(3)× SU(2)× U(1) , H = R4 ,

L = R4(C)× R64(G)× R64(G)× R64(G) ,

and with the action . of G on H,L as previously described.
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The Standard Model 3-group, ( L
δ→ H

∂→ G , . , { , } ), defined as:

G = SO(3, 1)× SU(3)× SU(2)× U(1) , H = R4 ,

L = R4(C)× R64(G)× R64(G)× R64(G) .

The constrained 3BF action for the Standard Model coupled to Einstein-Cartan
gravity:

SGR+SM =

∫
M4

Bα̂ ∧ F α̂ + eâ ∧ G â + φÂ ∧H
Â

+
(
Bα̂ − Cα̂β̂Mcdβ̂e

c ∧ ed
)
∧λα̂−

(
γÂ − e

a ∧ eb ∧ ecCÂ
B̂MabcB̂

)
∧λÂ−4πi l2p εabcde

a ∧ eb ∧ βcφÂT
dÂ

B̂φ
B̂

+ζabα̂∧
(
Mab

α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed
)
+ζabÂ∧

(
Mabc

Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb
)

−εabcdea ∧ eb ∧ ec ∧ ed
(

Λ +MÂB̂φ
ÂφB̂ + YÂB̂Ĉφ

ÂφB̂φĈ + LÂB̂ĈD̂φ
ÂφB̂φĈφD̂

)
.

⇒ Finally, one can go even further and separate scalar and fermion fields into distinct groups,
employing the structure of a 4-group and a 4BF action. [Miković, MV (2021)]
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• Step 1: Rewrite the GR+SM action. . . done!

• Step 2: Quantize the topological sector. . . done! (see Tijana’s talk)

• Step 3: Impose the simplicity constraints. . . work in progress!

GR without matter can be described using 2-groups (H
∂→ G, .):

• The choice G = SO(3, 1), H = R4, is called the Poincaré 2-group. The corresponding
constrained 2BF action for GR is

SGR =

∫
M4

Bab ∧Rab(ω) + ea ∧Ga − φab ∧
(
Bab − 1

16πl2p
εabcd ec ∧ ed

)
One possible quantization prescription leads to the spincube model. [Miković, MV (2012)]

• A detailed representation theory for 2-groups (including the Poincaré 2-group), has been
developed in great detail. [Baez, Baratin, Freidel, Wise (2012)]

• The topological invariant and TQFT for the Euclidean 2-group (G = SO(4), H = R4) has
also been studied in detail. [Baratin, Freidel (2015); Asante etal (2020)]



CONCLUSIONS

• Higher gauge theory represents a formalism where gravity, gauge fields, fermions and Higgs
are treated on an equal footing.

• Resulting generalized spinfoam models naturally include matter fields coupled to gravity.

• The underlying algebraic structure of a 3-group classifies all fundamental fields by specifying
groups L,H,G and their maps δ, ∂, ., { , }.

• This structure has natural geometrical interpretation of parallel transport along a curve, a
surface, and a volume.

• The gauge group L specifies the complete matter sector of the Standard Model if one chooses

L = R4(C)× R64(G)× R64(G)× R64(G) .

• The action . of G on L specifies the transformation properties of matter fields.

• Nontrivial choices of the 3-group structure may provide new avenues for research on unifi-
cation of all fields.
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