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INTRODUCTION

A short recap of the spinfoam quantization method:

e Step 1: Rewrite the GR action. ..

e Step 2: Quantize the topological sector. ..

e Step 3: Impose the simplicity constraint. . .

Key question — how to add matter fields into the above?

Main problems:

e Tetrads are absent!! — no way to couple matter to gravity.

e Action for matter is not in the form “BF' plus constraints” — no way to construct Zgp.

e No Lie group “G” for matter fields — cannot use reps as colors.

Solution — employ categorical ladder and higher gauge theory!

Use HGT to generalize:

® a group to an n-group,

e a BF' action to an nBF' action.
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A flash introduction to higher category theory:

e An n-category is a set of objects with:

— morphisms (maps between objects),
— 2-morphisms (maps between morphisms),

— 3-morphisms (maps between 2-morphisms), ... up to n-morphisms,
along with certain axioms to provide suitable rules for composition, associativity, etc.

e An n-group is a special case of an n-category, which has only one object, and all morphisms
are invertible.

A more detailed introduction to higher category theory:

= look up “An Invitation to Higher Gauge Theory” [Baez, Huerta (2011)]
The purpose of n-groups (for physicists):

= more fine-grained description of symmetry using an n-group, than using a group,

= generalization of differential geometry: parallel transport, connection, holonomy, curvature.
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Focus on a Lie 3-group, specified in detail by a 2-crossed module:
[Faria Martins, Picken (2011); Wang (2014)]

e [, H G — Liegroups,

° 0,0 — boundary morphisms,

° > — action of G, >:GxG—-G, b:GxH—-H bv>:GXL—L,
e { ., } — Peiffer lifting, {,}:HxH-— L.

Axioms that hold among these maps:

Chain complex: 06 = 1g,

Conjugation: Ig>q0=0GGgog ",

G-equivariance of 0 and §:  gr0Oh =0(g>h), grdl=46(grl),
G-equivariance of lifting: g>{hi,ho} ={g>hi,g>ho},

Peiffer commutator: §{h1, ha} = hihohy ' (Ohy) > hy ',
L-commutator: {611,600} = lll21fll§1,

o-lifting relation: {61, h} {h,6l} = 1(Oh>171),

Left product rule: {hiho, hs} = {hy, hohshy'} Ohy > {hy, hs}.
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e Connection generalized to a 3-connection (a,3,7), a triple of algebra-valued differential

forms:
a = a®,(z) 7o @ dat cg®A(M),

B = %Baw/(x) te @ dat N da” ch® AQ(M) ,
vo= %WAW(x) Ty@dz* Ada” Ada? € 1@ A3(M).

e Line holonomy generalized to surface and volume holonomies:
g:PeXp/ a, h=S8exp [ 3, l:VeXp/ V.
P1 Sa V3

e Ordinary curvature generalized to 3-curvature (F, G, H), where:

F = dat+aANa—-005,
G = dB+an g—dy,
H = dy+anN~v—{BAS}.
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HIGHER GAUGE THEORY

At this point one can construct the action for a higher gauge theory:

SgBF:/ (BAF)g+(CANG)y+(DAH).
My

= Topological 3BF theory, based on the 3-group ( L LNy /e >, {, ).
The physical interpretation of the Lagrange multipliers C' and D:

o for H = R* multiplier C' can be interpreted as the tetrad 1-form:
C = e = ur)ts®da”, Mikovié, MV (2012)]

e for given L, multiplier D can be interpreted as the set of matter fields:

A
D — ¢ = ¢ (x)Ta. [Radenkovié, MV (2019)]

= The action thus becomes:

SgBF:/jm(B/\ﬂng(e/\Q)th(qS/\%)[.
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How many real-valued field components do we have in the Standard Model?

The fermion sector gives us:

(), (i), (), (),

(ve)r  (up)r (Ug)R (up)r family

SpInors

X

(e)r  (di)r  (dg)r  (d)r )

real-valued components

x 3 families x 4 — 192 real-valued components ¢ .

spinor

The Higgs sector gives us:

+
(ngb ) } — 2 complex scalar fields = 4 real-valued components ¢ .
0

This suggests the structure for L in the form:

L = Liermion X LHiggs ) dim Litermion = 192 ) dim LHiggs =4.
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The actions >: G X L — L and > : G x H — H specify the transformation properties of
matter ¢4 and tetrad e, with respect to Lorentz and internal symmetries:

e Choose the group G = SO(3,1) x SU(3) x SU(2) x U(1). Then, for example, given any
g € G and a doublet
()
dy) ;'

the action g > u; encodes that wuy, consists of 4 real-valued fields which transform as:

— a left-handed spinor wrt. SO(3,1),
— as a “blue” component of the fundamental representation of SU(3),

— and as “isospin +3” of the left doublet wrt. SU(2) x U(1).

e Moreover, G acts in the same way across families, suggesting the structure

Lfermion - Llst family X L2nd family X L3rd family 5 dim Lk—th family — 64 .

e Next choose the group H = R*. The action > of G on H is via vector representation for the
SO(3,1) part and via trivial representation for the SU(3) x SU(2) x U(1) part.
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The other maps in the 3-group are chosen to be trivial:
e Forall l € L and 4,V € H, we define

Sl=1p=0, Oi=1¢, {ud,7}=1y.

e In order to satisfy all axioms of a 3-group, the group L must be Abelian (the L-commutator
axiom). Thus, given the Abelian nature and dimensionality of L, the simplest choices for
its component groups are

Litiges = R*(C), Liermion tamily = R(G)
where G is the Grassmann algebra.
The Standard Model 3-group is thus specified with the choice:
G =S50(3,1) x SU3) x SU2) xU(1), H=R*,
L =R*C) x R*(G) x R*(G) x R*(G),

and with the action > of G on H, L as previously described.
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THE STANDARD MODEL

The Standard Model 3-group, ( L Snla , >, {_,_}), defined as:
G =S0(3,1) x SU(3) x SU(2) x U(1), H=TR*,

L =R*C) x R*(G) x R*(G) x R*(G).
The constrained 3BF action for the Standard Model coupled to Einstein-Cartan
gravity:
SGR—i—SM:/ BdA./T&+€d/\gd+¢A/\HA
My

+ (B@ — CdBMchec A ed) AN — (’721 —e* ANel A eCCABMabCE) AA—4ri l; Eabea® N €PN BcgbATdAngB
+Cabd/\(MadeCd€fec NegNecNes— FYA e, A ed) +CabAA (Mabcﬁscdefed NeeNef— FAN €a /\ eb)

—Eabed€” N e’ A ef A el <A + MAB¢A¢B + YABéQﬁAQbBQbO + LABCDQbAgﬁBQSCng) .

= Finally, one can go even further and separate scalar and fermion fields into distinct groups,
employing the structure of a 4-group and a 4BF action. [Mikovi¢, MV (2021)]
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e Step 1: Rewrite the GR4+SM action... done!
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Revisit the spinfoam quantization method:
e Step 1: Rewrite the GR4+SM action... done!
e Step 2: Quantize the topological sector... done! (see Tijana’s talk)

e Step 3: Impose the simplicity constraints... work in progress!
GR without matter can be described using 2-groups (H 2 G,>):

e The choice G = SO(3,1), H = R, is called the Poincaré 2-group. The corresponding
constrained 2BF action for GR is

1

Ser= | B“AR, “NGy— G A | B — —
GR //\44 b(w) + e Dab ( 16712

gabcd e. N ed)

One possible quantization prescription leads to the spincube model. [Mikovi¢, MV (2012)]

e A detailed representation theory for 2-groups (including the Poincaré 2-group), has been
developed in great detail. [Baez, Baratin, Freidel, Wise (2012)]

e The topological invariant and TQFT for the Euclidean 2-group (G = SO(4), H = R*) has
also been studied in detail. [Baratin, Freidel (2015); Asante etal (2020)]



CONCLUSIONS

e Higher gauge theory represents a formalism where gravity, gauge fields, fermions and Higgs
are treated on an equal footing.

e Resulting generalized spinfoam models naturally include matter fields coupled to gravity.

e The underlying algebraic structure of a 3-group classifies all fundamental fields by specifying
groups L, H, G and their maps §,0,>,{_, _}.

e This structure has natural geometrical interpretation of parallel transport along a curve, a
surface, and a volume.

e The gauge group L specifies the complete matter sector of the Standard Model if one chooses

L =R*C) x R*(G) x R*(G) x R*(G).

e The action > of GG on L specifies the transformation properties of matter fields.

e Nontrivial choices of the 3-group structure may provide new avenues for research on unifi-
cation of all fields.
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