```
>>> Topological invariant of 4-manifolds based
on a 3-group
>>> 2023 Workshop on Gravity, Holography, Strings and
Noncommutative Geometry, Belgrade, Serbia
Name: Tijana Radenković` (Institute of Physics Belgrade)
Date: 3. February 2023.
```

This research was supported by the Science Fund of the Republic of Serbia, grant 7745968, ''Quantum Gravity from Higher Gauge Theory 2021'' - QGHG-2021. The contents of this publication are the sole responsibility of the authors and can in no way be taken to reflect the views of the Science Fund of the Republic of Serbia.

Фонд за нayky

Републике Србије

Science Fund

of the Republic of Serbia

[^0]- 3-group and 3-gauge theory
\rightarrow based on R. Picken and J. Faria Martins, Diff. Geom. Appl. 29, 179 (2011), arXiv:0907. 2566.
- $3 B F$ action
\rightarrow Models with relevant dynamics T. Radenković and M. Vojinović, J. High Energy Phys.10, 222 (2019), arXiv:1904.07566.
- Quantization of the topological $3 B F$ theory
\rightarrow the state sum Z is an example of Porter's TQFT for $d=4$ and $n=3$ T. Porter, J. Lond. Math. Soc. (2)58, No. 3, 723 (1998), MR 1678163.
- Pachner move invariance
\rightarrow The construction of the state sum Z and a proof that the $3 B F$ state sum is invariant under Pachner moves.
T. Radenković and M. Vojinović, arXiv: 2201.02572.
\rightarrow This is a generalization of the state sum based on the classical 2BF action with the underlying 2 -group structure F. Girelli, H. Pfeiffer and E. M. Popescu, Jour. Math. Phys. 49, 032503 (2008), arXiv:0708.3051.
- Conclusions

$$
\text { 2-crossed module }\left(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},\right\}_{\mathrm{p}}\right)
$$

* Groups G, H, and L;
* maps ∂ and $\delta\left(\partial \delta=1_{G}\right)$;
* an action \triangleright of the group G on all three groups;
* a map $\left\{_,\right\}_{p}$ called the Peiffer lifting:

$$
\left\{_{-},\right\}_{\mathrm{p}}: H \times H \rightarrow L .
$$

Certain axioms hold true among all these maps:

1. $\delta\left(\left\{h_{1}, h_{2}\right\}_{\mathrm{p}}\right)=\left\langle h_{1}, h_{2}\right\rangle_{\mathrm{p}}, \quad \forall h_{1}, h_{2} \in H$,
2. $\left[l_{1}, l_{2}\right]=\left\{\delta\left(l_{1}\right), \delta\left(l_{2}\right)\right\}_{\mathrm{p}}, \quad \forall l_{1}, l_{2} \in L$. Here, the notation $[l, k]=l k l^{-1} k^{-1}$ is used;
3. $\left\{h_{1} h_{2}, h_{3}\right\}_{\mathrm{p}}=\left\{h_{1}, h_{2} h_{3} h_{2}^{-1}\right\}_{\mathrm{p}} \partial\left(h_{1}\right) \triangleright\left\{h_{2}, h_{3}\right\}_{\mathrm{p}}, \quad \forall h_{1}, h_{2}, h_{3} \in H$;
4. $\left\{h_{1}, h_{2} h_{3}\right\}_{\mathrm{p}}=\left\{h_{1}, h_{2}\right\}_{\mathrm{p}}\left\{h_{1}, h_{3}\right\}_{\mathrm{p}}\left\{\left\langle h_{1}, h_{3}\right\rangle_{\mathrm{p}}^{-1}, \partial\left(h_{1}\right) \triangleright h_{2}\right\}_{\mathrm{p}}, \quad \forall h_{1}, h_{2}, h_{3} \in H$;
5. $\{\delta(l), h\}_{\mathrm{p}}\{h, \delta(l)\}_{\mathrm{p}}=l\left(\partial(h) \triangleright l^{-1}\right), \quad \forall h \in H, \quad \forall l \in L$.

>>> The $3 B F$ theory

One can now generalize the notion of parallel transport from curves to surfaces and volumes.

* Given a 2 -crossed module, one can define a 3-connection, an ordered triple (α, β, γ), where α, β, and γ are algebra-valued differential forms,

$$
\begin{array}{ll}
\alpha=\alpha^{\alpha}{ }_{\mu} \tau_{\alpha} \mathrm{d} x^{\mu}, & \alpha \in \mathcal{A}^{1}\left(\mathcal{M}_{4}, \mathfrak{g}\right), \\
\beta=\beta^{a}{ }_{\mu \nu} t_{a} \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}, & \beta \in \mathcal{A}^{2}\left(\mathcal{M}_{4}, \mathfrak{h}\right), \tag{1}\\
\gamma=\gamma^{A}{ }_{\mu \nu \rho} T_{A} \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu} \wedge \mathrm{d} x^{\rho}, & \gamma \in \mathcal{A}^{3}\left(\mathcal{M}_{4}, \mathfrak{l}\right) .
\end{array}
$$

* Then introduce the line, surface and volume holonomies,

$$
\begin{equation*}
g=\mathcal{P} \exp \int_{\gamma} \alpha, \quad h=\mathcal{P} \exp \int_{S} \beta, \quad l=\mathcal{P} \exp \int_{V} \gamma . \tag{2}
\end{equation*}
$$

* The corresponding fake 3 -curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ is defined as:

$$
\begin{gather*}
\mathcal{F}=\mathrm{d} \alpha+\alpha \wedge \alpha-\partial \beta, \quad \mathcal{G}=\mathrm{d} \beta+\alpha \wedge^{\triangleright} \beta-\delta \gamma, \tag{3}\\
\mathcal{H}=\mathrm{d} \gamma+\alpha \wedge^{\triangleright} \gamma+\{\beta \wedge \beta\}_{\mathrm{pf}} .
\end{gather*}
$$

>>> The $3 B F$ theory

At this point one can construct the so-called $3 B F$ theory.

* For a manifold \mathcal{M}_{4} and the 2-crossed module
$\left(L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},\right\}_{\mathrm{pf}}\right)$, that gives rise to 3 -curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H})$, one defines the $3 B F$ action as

$$
\begin{equation*}
S_{3 B F}=\int_{\mathcal{M}_{4}}\langle B \wedge \mathcal{F}\rangle_{\mathfrak{g}}+\langle C \wedge \mathcal{G}\rangle_{\mathfrak{h}}+\langle D \wedge \mathcal{H}\rangle_{\mathfrak{r}} \tag{4}
\end{equation*}
$$

* $3 B F$ theory is a topological gauge theory,
* it is based on the 3 -group structure,
* it is a generalization of an ordinary $B F$ theory for a given Lie group G.
* Physically relevant models

The constrained $2 B F$ actions for

* Yang-Mills field,
* and Einstein-Cartan gravity,
and constrained $3 B F$ actions describing
* Klein-Gordon field,
* Dirac field,
* Weyl fields,
* and Majorana fields
coupled gravity in the standard way are formulated.
* Curves are labeled with the elements of G, and the elements are composed as

* Surfaces are labeled with the elements $h \in H$. We split the boundary into two curves, the source curve $g_{1} \in G$ and the target curve $g_{2} \in G$,

so that the surface $h \in H$ satisfies:

$$
\partial(h)=g_{2} g_{1}^{-1}
$$

* Volumes are labeled with the elements $l \in L$. We split the boundary into the source surface $\partial_{3}^{-}(l)=h_{1}$ and the target surface $\partial_{3}^{+}(l)=h_{2}$, and the common boundary of h_{1} and h_{2} we split into the source curve $\partial_{2}^{-}(l)=g_{1}$ and the target curve $\partial_{2}^{+}(l)=g_{2}$,

$$
\delta(l)=h_{2} h_{1}^{-1}
$$

>>> 3-gauge theory

* Upward composition. The upward composition of 3 -morphisms (g_{1}, h_{1}, l_{1}) and $\left(g_{1}, h_{2}, l_{2}\right)$, when they are compatible, when $\partial_{3}^{+}\left(l_{1}\right)=\partial_{3}^{-}\left(l_{2}\right)$,

$$
\begin{equation*}
\left(g_{1}, h_{2}, l_{2}\right) \#_{3}\left(g_{1}, h_{1}, l_{1}\right)=\left(g_{1}, h_{1}, l_{2} l_{1}\right) . \tag{5}
\end{equation*}
$$

* Vertical composition. The vertical composition of two 3 -morphisms $\left(g_{1}, h_{1}, l_{1}\right)$ and $\left(g_{2}, h_{2}, l_{2}\right)$, when they are compatible, when $\partial_{2}^{+}\left(l_{1}\right)=\partial_{2}^{-}\left(l_{2}\right)$,

* Whiskering of the 3 -morphisms with morphisms. Whiskering of a 3-morphism by a morphism from the left is the composition of a volume $l \in L$ and curve $g_{1} \in G$ from the left, when they are compatible, when $\partial_{1}^{+}(l)=\partial_{1}^{-}\left(g_{1}\right)$,

$$
\begin{equation*}
g_{1} \#_{1}\left(g_{2}, h_{1}, l\right)=\left(g_{1} g_{2}, g_{1} \triangleright h, g_{1} \triangleright l\right) \tag{7}
\end{equation*}
$$

One can whisker a 3 -morphism by a morphism from the right, when they are compatible, $\partial_{1}^{-}(l)=\partial_{1}^{+}\left(g_{2}\right)$,

>>> 3-gauge theory

* Whiskering of 3 -morphisms with 2 -morphisms. Whiskering of a 3-morphism with a 2 -morphisms from below, when they are compatible, $\partial_{2}^{+}(l)=\partial_{2}^{-}\left(h_{2}\right)$,

$$
\begin{equation*}
\left(g_{1}, h_{1}, l\right) \not \#_{2}\left(g_{2}, h_{2}\right)=\left(g_{1}, h_{2} h_{1}, h_{2} \triangleright^{\prime} l\right) \tag{9}
\end{equation*}
$$

* Whiskering a 3 -morphism by 2 -morphism from above, when they are compatible, when $\partial_{2}^{-}(l)=\partial_{2}^{+}\left(h_{1}\right)$,

$$
\begin{equation*}
\left(g_{1}, h_{1}\right) \#_{2}\left(g_{2}, h_{2}, l\right)=\left(g_{1}, h_{2} h_{1}, l\right) . \tag{10}
\end{equation*}
$$

```
>>> 3-gauge theory
```

* The interchanging 3-arrow. The horizontal composition of two 2 -morphisms h_{1} and h_{2}, when they are compatible, when $\partial_{1}^{-}\left(h_{1}\right)=\partial_{1}^{+}\left(h_{2}\right)$,

that results in a 3 -morphism l, with source surface and target surfaces $\partial_{3}^{-}(l)=\left(\left(g_{1}, h_{1}\right) \#_{1} g_{2}^{\prime}\right) \#_{2}\left(g_{1} \#_{1}\left(g_{2}, h_{2}\right)\right), \quad \partial_{3}^{+}(l)=\left(g_{1}^{\prime} \#_{1}\left(g_{2}, h_{2}\right)\right) \#_{2}\left(\left(g_{1}, h_{1}\right) \#_{1} g_{2}\right)$.

One obtains,

$$
\begin{equation*}
\left(g_{1}, h_{1}\right) \#_{1}\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} g_{1} \triangleright h_{2},\left\{h_{1}, g_{1} \triangleright h_{2}\right\}_{\mathrm{p}}^{-1}\right) . \tag{11}
\end{equation*}
$$

```
>>> 3-gauge theory
```

Lemma
Let us consider a triangle, $(j k l)$. The edges $(j k), j<k$, are labeled by group elements $g_{j k} \in G$ and the triangle $(j k \ell), j<k<\ell$, by element $h_{j k \ell} \in H$.

The curve $\gamma_{1}=g_{k \ell} g_{j k}$ is the source and the curve $\gamma_{2}=g_{j \ell}$ is the target of the surface morphism $\Sigma: \gamma_{1} \rightarrow \gamma_{2}$, labeled by the group element $h_{j k \ell}$,

$$
\begin{equation*}
g_{j \ell}=\partial\left(h_{j k \ell}\right) g_{k \ell} g_{j k} \tag{13}
\end{equation*}
$$

>>> 3-gauge theory

Lemma
Let us consider a tetrahedron, ($j k \ell m$).

Moving from surface shown on the diagram (14) to the surface shown on the diagram (15) is determined by the group element $l_{j k \ell m}$,

$$
\begin{equation*}
h_{j k m} h_{k \ell m}=\delta\left(l_{j k \ell m}\right) h_{j \ell m}\left(g_{\ell m} \triangleright h_{j k \ell}\right) . \tag{16}
\end{equation*}
$$

[3. C:\Program Files \Preliminaries \backslash 3-gauge theory.dll]\$ -

>>> 3-gauge theory

Lemma (δ_{L})
We consider a 4 -simplex, ($j k \ell m n$). We cut the 4 -simplex volume along the surface $h_{j m n} g_{m n} \triangleright\left(h_{j \ell_{m}} g_{\ell m} \triangleright h_{j k \ell}\right)$.

Lemma (δ_{L})
After the upward composition of these 3 -morphisms, the obtained 3 -morphism is the identity morphism with source and target surface $\mathcal{V}_{1}=\mathcal{V}_{2}=h_{j m n} g_{m n} \triangleright\left(h_{j \ell m} g_{\ell m} \triangleright h_{j k \ell}\right)$,
$l_{j \ell m n}^{-1} h_{j \ell n} \triangleright^{\prime}\left\{h_{\ell m n},\left(g_{m n} g_{\ell m}\right) \triangleright h_{j k \ell}\right\}_{\mathrm{p}} l_{j k \ell n}^{-1}\left(h_{j k n} \triangleright^{\prime} l_{k \ell m n}\right) l_{j k m n} h_{j m n} \triangleright^{\prime}\left(g_{m n} \triangleright l_{j k \ell m}\right)=e$.
>>> Quantization of the topological $3 B F$ theory
We want to construct a state sum model from the classical $S_{3 B F}$ action by the usual spinfoam quantization procedure.

$$
\begin{equation*}
Z=\int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \gamma \mathcal{D} B \mathcal{D} C \mathcal{D} D \exp \left(i \int_{M_{4}}\langle B \wedge \mathcal{F}\rangle_{\mathfrak{g}}+\langle C \wedge \mathcal{G}\rangle_{\mathfrak{h}}+\langle D \wedge \mathcal{H}\rangle_{\mathfrak{r}}\right) \tag{18}
\end{equation*}
$$

\rightarrow The formal integration over the Lagrange multipliers B, C, and D leads to:

$$
\begin{equation*}
Z=\mathcal{N} \int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \gamma \delta(\mathcal{F}) \delta(\mathcal{G}) \delta(\mathcal{H}) \tag{19}
\end{equation*}
$$

\hookrightarrow Discretization of the 3-connection:

- $\alpha \in \mathcal{A}^{1}\left(\mathcal{M}_{4}, \mathfrak{g}\right) \mapsto g_{\epsilon} \in G$ coloring the edges $\epsilon=(j k) \in \Lambda_{1}$,
- $\beta \in \mathcal{A}^{2}\left(\mathcal{M}_{4}, \mathfrak{h}\right) \mapsto h_{\Delta} \in H$ coloring the triangles $\Delta=(j k \ell) \in \Lambda_{2}$,
$\triangleright \gamma \in \mathcal{A}^{3}\left(\mathcal{M}_{4}, l\right) \mapsto l_{\tau} \in L$ coloring the tetrahedrons $\tau=(j k \ell m) \in \Lambda_{3}$.

| $\int \mathcal{D} \alpha$ | \mapsto | $\Pi_{(j k) \in \Lambda_{1}} \int_{G} d g_{j k}$ |
| ---: | :--- | :---: | :---: |
| $\int \mathcal{D} \beta$ | \mapsto | $\Pi_{(j k \ell) \in \Lambda_{2}} \int_{H} d h_{j k \ell}$ |
| $\int \mathcal{D} \gamma$ | \mapsto | $\Pi_{(j k \ell m) \in \Lambda_{3}} \int_{L} d l_{j k \ell m}$ |

>>> Quantization of the toplogical $3 B F$ theory

\rightarrow The condition $\delta(\mathcal{F})$ is disretized as

$$
\begin{equation*}
\delta(\mathcal{F})=\prod_{(j k \ell) \in \Lambda_{2}} \delta_{G}\left(g_{j k \ell}\right), \quad \delta_{G}\left(g_{j k \ell}\right)=\delta_{G}\left(\partial\left(h_{j k \ell}\right) g_{k \ell} g_{j k} g_{j \ell}^{-1}\right) . \tag{20}
\end{equation*}
$$

\rightarrow The condition $\delta(\mathcal{G})$ on the fake curvature 3 -form reads

$$
\begin{gather*}
\delta(\mathcal{G})=\prod_{(j k \ell m) \in \Lambda_{3}} \delta_{H}\left(h_{j k \ell m}\right), \tag{21}\\
\delta_{H}\left(h_{j k \ell m}\right)=\delta_{H}\left(\delta\left(l_{j k \ell m}\right) h_{j \ell m}\left(g_{\ell m} \triangleright h_{j k \ell}\right) h_{k \ell m}^{-1} h_{j k m}^{-1}\right) . \tag{22}
\end{gather*}
$$

\rightarrow The condition $\delta(\mathcal{H})$ is disretized as

$$
\begin{equation*}
\delta(\mathcal{H})=\prod_{(j k \ell m n) \in \Lambda_{4}} \delta_{L}\left(l_{j k \ell m n}\right), \tag{23}
\end{equation*}
$$

$\delta_{L}\left(l_{j k \ell m n}\right)=\delta_{L}\left(l_{j \ell m n}^{-1} h_{j \ell n} \triangleright^{\prime}\left\{h_{\ell m n},\left(g_{m n} g_{\ell m}\right) \triangleright h_{j k \ell}\right\}_{\mathrm{p}} l_{j k \ell n}^{-1}\left(h_{j k n} \triangleright^{\prime} l_{k \ell m n}\right) l_{j k m n} h_{j m n} \triangleright^{\prime}\left(g_{m n} \triangleright l_{j k \ell m}\right)\right)$.
...all off this \Longrightarrow

$$
\begin{equation*}
Z=\mathcal{N} \prod_{(j k) \in \Lambda_{1}} \int_{G} d g_{j k} \prod_{(j k \ell) \in \Lambda_{2}} \int_{H} d h_{j k \ell} \prod_{(j k \ell m) \in \Lambda_{3}} \int_{L} d l_{j k e m}\left(\prod_{(j k \ell) \in \Lambda_{2}} \delta_{G}\left(g_{j k l}\right)\right)\left(\prod_{(j k e m) \in \Lambda_{3}} \delta_{H}\left(h_{j k e m}\right)\right)\left(\prod_{(j k k m n) \in \Lambda_{4}} \delta_{L}\left(l_{j k e m n}\right)\right) . \tag{25}
\end{equation*}
$$

This expression can be made independent of the triangulation if one appropriately chooses the constant factor \mathcal{N}.

Definition

Let \mathcal{M}_{4} be a compact and oriented combinatorial 4-manifold, and $\left(L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},\right\}_{\mathrm{pf}}\right)$ be a 2 -crossed module. The state sum of topological higher gauge theory is defined by

$$
\begin{align*}
& Z=|G|^{-\left|\Lambda_{0}\right|+\left|\Lambda_{1}\right|-\left|\Lambda_{2}\right|}|H|^{\left|\Lambda_{0}\right|-\left|\Lambda_{1}\right|+\left|\Lambda_{2}\right|-\left|\Lambda_{3}\right|} \mid\left[\left.\right|^{-\left|\Lambda_{0}\right|+\left|\Lambda_{1}\right|-\left|\Lambda_{2}\right|+\left|\Lambda_{3}\right|-\left|\Lambda_{4}\right|}\right. \\
& \times\left(\Pi_{(j k) \in \Lambda_{1}} \int_{G} d g_{j k}\right)\left(\Pi_{(j k \ell) \in \Lambda_{2}} \int_{H} d h_{j k \ell}\right)\left(\Pi_{(j k \ell m) \in \Lambda_{3}} \int_{L} d l_{j k \ell m}\right) \\
& \times\left(\Pi_{(j k \theta) \in \Lambda_{2}} \delta_{G}\left(\partial\left(h_{j k \ell}\right) g_{k \ell} g_{j k} g_{j \ell}^{-1}\right)\right)\left(\Pi_{\left(j k \ell_{m}\right) \in \Lambda_{3}} \delta_{H}\left(\delta\left(l_{\left.j k \epsilon_{m}\right)} h_{j \ell m}\left(g_{\ell m} \triangleright h_{j k \ell}\right) h_{k \ell m}^{-1} h_{j k m}^{-1}\right)\right)\right. \\
& \times\left(\Pi_{(j k \ell m n) \in \Lambda_{4}} \delta_{L}\left(l_{j \neq m n}^{-1} h_{j \ell n} \triangleright^{\prime}\left\{h_{\ell m n},\left(g_{m n} g_{\ell m}\right) \triangleright h_{j k \ell}\right\}_{\mathrm{p}} l_{j k \ell n}^{-1}\left(h_{j k n} \triangleright^{\prime} l_{k \ell m n}\right) l_{j k m n} h_{j m n} \triangleright^{\prime}\left(g_{m n} \triangleright l_{j k \ell m}\right)\right)\right) \text {. } \tag{26}
\end{align*}
$$

Here $\left|\Lambda_{0}\right|$ denotes the number of vertices, $\left|\Lambda_{1}\right|$ edges, $\left|\Lambda_{2}\right|$ triangles, $\left|\Lambda_{3}\right|$ tetrahedrons, and $\left|\Lambda_{4}\right|$ 4-simplices of the triangulation.
(3)
(2)

(4)
(6)
(6)
(2)

(5)

Right side

$$
\begin{array}{r}
Z_{\text {right }}^{1 \leftrightarrow 5}=|G|^{-11}|H|^{-4}|L|^{-1} \int_{G^{5}} \prod_{(j k) \in M_{1}} d g_{j k} \int_{H^{10}} \prod_{(j k \ell) \in M_{2}} d h_{j k \ell} \int_{L^{10}} \prod_{(j k l m) \in M_{3}} d l_{j k l m} \\
\quad\left(\prod_{(j k \ell) \in M_{2}} \delta_{G}\left(g_{j k \ell}\right)\right)\left(\prod_{(j k \ell m) \in M_{3}} \delta_{H}\left(h_{j k \ell m}\right)\right)\left(\prod_{(j k \ell m n) \in M_{4}} \delta_{L}\left(l_{j k \ell m n}\right)\right) Z_{\text {remainder }}, \tag{27}
\end{array}
$$

Left side

$$
\begin{equation*}
Z_{\text {left }}^{1 \leftrightarrow 5}=|G|^{-5}|H|^{0}|L|^{-1} \delta_{L}\left(l_{23456}\right) Z_{\text {remainder }} \tag{28}
\end{equation*}
$$

The $Z_{\text {remainder }}$ denotes the part of the state sum that is the same on both sides of the move, and thus irrelevant for the proof of invariance.
>>> $2 \leftrightarrow 4$ and $3 \leftrightarrow 3$ Pachner moves

* 2-crossed modules and 3-gauge theory
* Physically relevant models -The constrained $2 B F$ actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained $3 B F$ actions describing the Klein-Gordon, Dirac, Weyl and Majorana fields coupled to Yang-Mills fields and gravity in the standard way.
* Starting from the notion of Lie 3-groups, we generalize the integral picture of gauge theory to a 3-gauge theory that involves curves, surfaces, and volumes labeled with elements of non-Abelian groups.
* The definition of the discrete state sum model of topological higher gauge theory in dimension $\mathrm{d}=4$.
* We prove that the state sum is well defined, i.e., invariant under the Pachner moves and thus independent of the chosen triangulation.
>>> Synopsis
* 2-crossed modules and 3-gauge theory
* Physically relevant models -The constrained $2 B F$ actions describing the Yang-Mills field and Einstein-Cartan gravity, and constrained $3 B F$ actions describing the Klein-Gordon, Dirac, Weyl and Majorana fields coupled to Yang-Mills fields and gravity in the standard way.
* Starting from the notion of Lie 3-groups, we generalize the integral picture of gauge theory to a 3-gauge theory that involves curves, surfaces, and volumes labeled with elements of non-Abelian groups.
* The definition of the discrete state sum model of topological higher gauge theory in dimension $\mathrm{d}=4$.
* We prove that the state sum is well defined, i.e., invariant under the Pachner moves and thus independent of the chosen triangulation.

Thank you for your attention!

[^0]: †rtijana@ipb.ac.rs

