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>>>

3-groups

2-crossed module (L Sl G, > {_, _}p)

Groups G, H, and L;

maps 0 and 0 (96 =1¢g);

an action > of the group G on all three groups;
a map {_,_}, called the Peiffer lifting:

{_,_}p:HxH-L.

Certain axioms hold true among all these maps:

. 5({h1,h2}p)=<h1,h2)p, Vhl,hQEH,

[l1,l2] = {6(11),8(12) }p» Vli,lp € L. Here, the notation [I,k]=1kl"tk™! is
used;

{hiha, hs}p = {h1, hahsh51},0(h1) > {h2, hs}p, Vhi,ho,hs € H;
{h1,hah3}p = {h1,ha}p{h1, h3}p{(h1, h3)5",0(h1) > ha}p, Vhi,ha,hs € H;
(6, yp{h,6()}p = U(B(R) > 17Y),  VheH, VieL.
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>>> The 3BF theory

One can now generalize the notion of parallel transport from curves
to surfaces and volumes.
* Given a 2-crossed module, one can define a 3-commection, an
ordered triple («,(,7), where a, B, and v are algebra-valued
differential forms,

a=a%, o da*, ae AL(My,g),
B =B tadzt Adz”, B e A2 (My,h), (0
’y:’yA#upTAdw“/\dx”/\dzL’p, v eA3(My,l).

* Then introduce the line, surface and volume holonomies,

g:PexpLa, thexp[Sﬁ, Z=P€Xp/V7~ (2

* The corresponding fake 3-curvature (F,G,H) is defined as:

F=da+anra-08, G=dB+an” -0y, 3
H=dy+ar"y+{BAB}p.
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>>> The 3BF theory

At this point one can construct the so-called 3BF theory.
* For a manifold My and the 2-crossed module

) 17}
(L->H->G,>,{_,_}pr), that gives rise to 3-curvature (F,G,H),
one defines the 3BF action as

S3BF=[M (BAF)g+{(CAG)y+(DAH). (4)

* 3BI theory is a topological gauge theory,
* it is based on the 3-group structure,
* it is a generalization of an ordinary BF' theory for a given Lie
group G.
* Physically relevant models
The constrained 2BF actions for
*
* and
and constrained 3BF actions describing
*

*
*
* and
coupled gravity in the standard way are formulated.
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>>> 3-gauge theory

* Curves are labeled with the elements of (, and the elements are composed as

g1 92 9192

* Surfaces are labeled with the elements h e H. We split the boundary into two
curves, the source curve g € G and the target curve g2 € G,

so that the surface h € H satisfies:

* Volumes are labeled with the elements [e€ L. We split the boundary into the
source surface 95(l) = h1 and the target surface 93 (l) =h2, and the common
boundary of h; and hy we split into the source curve 9,(l)=g1 and the target
curve 93 (1) = g2,

g1 g1
%/I[\\ 1 %/1[\\
° hi ¢ = e hy e |
/ /
g2 g2
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>>> 3-gauge theory

* . The upward composition of 3-morphisms (gi,hi1,l1) and
(g91,h2,l2), when they are compatible, when 93 (l1) =95 (l2),

(g91,h2,12)#3(g91,h1,11) = (91, h1,l201) . )

* . The vertical composition of two 3-morphisms (gi,h1,l1)
and (g2,h2,l2), when they are compatible, when 93 (l1) =95 (l2),

g1 g1
m 1 m
G W > n 7 W
g2 g2

92 > 92
P <=—0 = P <—0

S Whe S~

g3 g3

)

(92, h2,12)#2(g1,h1,11) = (91, hah1,l2(ha b 11)). ()
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>>> 3-gauge theory

. Whiskering of a 3-morphism by a
morphism from the left is the composition of a volume [ € L and curve g; € G
from the left, when they are compatible, when 07 (1) = 97 (g1),

*

g2 g2 9192 g192
" #/ﬂ\ : o /ﬂ\ /ﬂ\ . ﬂ
e <— o hi ® = e<——e ho ® = ® gibhy, ® = e gibhy ®
‘\/ \_/
g5 g5 9195 9195
g1#1(g2,h1,1) = (9192,91 > h,g1 > 1) . (7

One can whisker a 3-morphism by a morphism from the right, when they are
compatible, 97 (1) =97 (g2),

g1 g1 gi192 9192
/M\ o . /ﬂ\ 9 /ﬂ\ : /M\
. hyo<——o = o ho ®<—— 0 = @ ha e = o ho .,
91 91 9192 9192
(91, h1,0)#192 = (9192, h1,1) . (8)
(8/201
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>>> 3-gauge theory

* . Whiskering of a 3-morphism with a
2-morphisms from below, when they are compatible, 93 (1) =9; (h2),

g1 g1
92 92
g2 Iy g2
=<0 = P <—0 5
SNV~ S Yhe
93 93
(g1, h1,D)#2(g2,h2) = (g1, hahi1,ha " 1). (9)

* Whiskering a 3-morphism by 2-morphism from above, when they are compatible,

when 95 (1) =03 (h1),

g1 g1
2 Y 1 PN
o<¢o ;1 o<¢o

92 92

g2 l g2
< ° > e <—— o,

Y S~ ¥~

93 a3

(g1, h1)#2(g2, h2,1) = (g1, h2h1,l). (10)
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>>> 3-gauge theory

* . The horizontal composition of two 2-morphisms hj
and hy, when they are compatible, when 9 (h1) =97 (h2),

f?"’”gia\‘\\ ‘z”'jfi‘“\\\
g1 95

that results in a 3-morphism [, with source surface and target surfaces

95 (1) = ((g1, h)#195 ) #2(g1#1 (92, h2)), 05 (1) = (g1#1 (92, h2))#2((g1, k1) #192) -
One obtains,

(91,h1)#1(g2,h2) = (9192, h191 > ha2,{h1,91 > h2};1)~ (11)
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>>> 3-gauge theory

Lemma

Let us consider a triangle, (jk¢). The edges (jk),j <k, are labeled
by group elements g,; € G and the triangle (jk¢),j<k</{, by element
hjkz eH.

9kl 9ijk 9kl 9ijk

LT P2 P Z e Ve
0 ke oj = lo ke °j . (12)
9git O(hjki) gr195k

The curve 7; = gxegjr is the source and the curve 72 =g,¢ is the
target of the surface morphism X :7; — 72, labeled by the group
element hjie,

9je = O(hjke) 9regjn - (13)
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>>> 3-gauge theory

Lemma
Let us consider a tetrahedron, (jkém).

me <—— el ok oj = (gem8jes jem ) #2(gem#1(gregins jke) ) = (GemGredins hiem (Gem > hjke)) -
ﬂh_;hn ‘U’hj ke
9
gijm

(14)

gem ke

LT L 9jk .
me ol ok ~— Gy = (.(/kmgjlm h]'km)#?((glmgkh hké‘m)#lgjk') = (g£7rbgk€gjks hjkmhké‘m) .
U,/bkim N}hkm

gim

(15)

Moving from surface shown on the diagram (14) to the surface shown
on the diagram (15) is determined by the group element [ljiem ,

hjkmhkfm = 6(ljk:€m)hjém(g€m > hjk’€) . (16)
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>>> 3-gauge theory

Lemma (d7,)
We consider a 4-simplex, (jkfmn). We cut the 4-simplex volume along the surface

hjmn.(]mn > (hjé’mglm > h]kl) .

[VJ,L\ID{{L Loy (g),\»\,}l,m) PL?,J)%;]'!
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>>> 3-gauge theory

Lemma (dr,)

After the upward composition of these 3-morphisms, the obtained
3-morphism is the identity morphism with source and target surface
Vi=Vo = hjmngmn > (hjémgém > hjk[) s

-1 ! =1 ! !
l"l/mn h’]'l" > {hé‘mn: (gmngﬁm > hjk’l}p lr']g[n(h’jk'n > lklmn)ij'mnhjmn > (gmn > ljum) =é€.
J J

an
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>>> Quantization of the topological 3BF theory

We want to construct a state sum model from the classical Ss3pp
action by the usual spinfoam quantization procedure.

Z:/DanDx DBDC DD (,\\'])(/f (/;Af)ﬂ+<(,’Ag>[,+</)AH>[).
My -

(18)
<> The formal integration over the Lagrange multipliers B, C, and D leads to:
Z:/\"'/’Dm’Df’D: 5(F)5(G)S(H) . (19)

<> Discretization of the 3-connection:

» ae A (My,g) » ge € G coloring the edges €= (jk) € Ay,

» Be A%2(My,b) = ha € H coloring the triangles A = (jkf) € Ag,

» ye A3(My,l) = I, € L coloring the tetrahedrons 7 = (jkém) e Az.

| Do — [ (jkyen; Jo 995k
/DB > I (jkeyens Jo e —

[ Dy > T (kemyens [ dljkem
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>>> Quantization of the toplogical 3BF theory

< The condition §(F) is disretized as

§(F)= TI dalgjre), 56 (gjne) = 0G(0(hjke) gre 95k 937 ) - (20)
(jk€)eAs

— The condition 6(G) on the fake curvature 3-form reads

5G) = II du(hjkem), (21)
(jkem)eAs
88 (hjkem) = 85 (8(Ljkem ) jem (Gem > Pjke) Rigpm hj_km) . (22)
< The condition §(?) is disretized as
dH)= TI  dkemn), (23)
(jkfmmn)eAy

1, (Uiemn) = 6L (L4 Mjen > {hemn, (Gmngem) > hikeyp G (Rikn > lemn)lkmnhjmn > (gmn > Likem)) -

(24)

_[dg;k ]dh]kl IT ]dl]kem( II Jc(g]u))( II JH(hjkzm))( JL(ljk:lmn))~
(_/k)i/\l & (k)N 7 (jkém)eAs 7. (jkE)eAs (jkém)eAs (jktmn)eAy

(25)

This expression can be made independent of the triangulation if one appropriately
chooses the constant factor N .

[4. C:\Program Files\Quantization of the topological 3 BF theory.d11]$ _ [16/20]



Definition
Let M, be a compact and oriented combinatorial 4-manifold, and

) )
(L-H->G,>,{_,_}pt) be a 2-crossed module. The state sum of
topological higher gauge theory is defined by

_ —[Aol+HA1l=|Az]| 7l Aol=[A1+A2|=[As] | 7 =[Aol+A1|=|A2]+[As|=|A4]
Z = |G| |H| L]

x H(Jk)elx.!d!l(;k) (H(Jk[)f[\»;}{dh]ki)(ﬂ(]k[m)é/\g{dljkim)

| TT(jkeyens 0 (OChjne) gre gik y;}))(l_[(jmn)m_, 611 (8(Likem ) Pjem (gem © hijke) hipy, h}/im))

-1 ’ -1 ’ ’
X(H(Jkymn)ah SL(Ldmn Pien o {homns (GmnGemy > Piketp Gion (Pikn > lhemn)ikmnPimn > (gmn > l]k[rn,)))~

(26)
Here |Ag| denotes the number of vertices, |Ai| edges, |As| triangles,

|A3] tetrahedrons, and |A4| 4-simplices of the triangulation.
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>>> 1 < 5 Pachner move

©))

@ @) Ak
@ @)
©) ) ﬂr

©) 15 ©)
Right side
2z T dage [y TT e [y, T dan
HY (GrtyeMs, L0 Gkim)eMs
(27)
( I 5G(9_/k1))( I 5H(h1um))( IT 5L(l]umn))
(jkE)eMs (jkem)eMs (jkemn)eMy
Left side
15 =5 771017 -1
Ziogy = |GIT°|HIP L™ 0 (I23456)
The denotes the part of the state sum that is the same on both sides of

the move, and thus irrelevant for the proof of invariance.
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>>> 2+ 4 and 3 < 3 Pachner moves

2

(1) (6)
4) ()
4) @

(5)

® (3
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>>>

Synopsis

2-crossed modules and 3-gauge theory

Physically relevant models -The constrained 2BF actions

describing the Yang-Mills field and Einstein-Cartan gravity,
and constrained 3BF actions describing the Klein-Gordon,
Dirac, Weyl and Majorana fields coupled to Yang-Mills fields
and gravity in the standard way.

Starting from the notion of Lie 3-groups, we generalize the
integral picture of gauge theory to a 3-gauge theory that
involves curves, surfaces, and volumes labeled with elements of
non-Abelian groups.

The definition of the discrete state sum model of
topological higher gauge theory in dimension d=4.

We prove that the state sum is well defined, i.e., invariant
under the Pachner moves and thus independent of the chosen
triangulation.
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