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>>> A sketch of the talk

▸ 3-group and 3-gauge theory
↪ based on R. Picken and J. Faria Martins, Diff. Geom. Appl. 29, 179

(2011), arXiv:0907.2566.

▸ 3BF action
↪ Models with relevant dynamics T. Radenković and M. Vojinović, J. High

Energy Phys.10, 222 (2019), arXiv:1904.07566.

▸ Quantization of the topological 3BF theory
↪ the state sum Z is an example of Porter's TQFT for d = 4 and n = 3

T. Porter, J. Lond. Math. Soc. (2)58, No. 3, 723 (1998), MR 1678163.

▸ Pachner move invariance
↪ The construction of the state sum Z and a proof that the 3BF state sum

is invariant under Pachner moves.
T. Radenković and M. Vojinović, arXiv: 2201.02572.

↪ This is a generalization of the state sum based on the classical 2BF
action with the underlying 2-group structure
F. Girelli, H. Pfeiffer and E. M. Popescu, Jour. Math. Phys. 49, 032503
(2008), arXiv:0708.3051.

▸ Conclusions



>>> 3-groups

2-crossed module (L δ→H
∂→ G, ⊳, {_, _}p)

* Groups G, H, and L;
* maps ∂ and δ (∂δ = 1G);
* an action ⊳ of the group G on all three groups;
* a map {_ ,_}p called the Peiffer lifting:

{_ ,_}p ∶H ×H → L .

Certain axioms hold true among all these maps:
1. δ({h1, h2}p) = ⟨h1 , h2⟩p, ∀h1, h2 ∈H,

2. [l1, l2] = {δ(l1) , δ(l2)}p, ∀l1 , l2 ∈ L. Here, the notation [l, k] = lkl−1k−1 is
used;

3. {h1h2, h3}p = {h1, h2h3h
−1
2 }p∂(h1) ⊳ {h2, h3}p, ∀h1, h2, h3 ∈H;

4. {h1, h2h3}p = {h1, h2}p{h1, h3}p{⟨h1, h3⟩−1p , ∂(h1) ⊳ h2}p, ∀h1, h2, h3 ∈H;

5. {δ(l), h}p{h, δ(l)}p = l(∂(h) ⊳ l−1), ∀h ∈H , ∀l ∈ L.
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>>> The 3BF theory

One can now generalize the notion of parallel transport from curves
to surfaces and volumes.
* Given a 2-crossed module, one can define a 3-connection, an
ordered triple (α,β, γ), where α, β, and γ are algebra-valued
differential forms,

α = αα
µ τα dxµ , α ∈ A1(M4,g) ,

β = βa
µν ta dx

µ ∧ dxν , β ∈ A2(M4,h) ,
γ = γA

µνρ TA dxµ ∧ dxν ∧ dxρ , γ ∈ A3(M4, l) .
(1)

* Then introduce the line, surface and volume holonomies,

g = Pexp∫
γ
α , h = Pexp∫

S
β , l = Pexp∫

V
γ . (2)

* The corresponding fake 3-curvature (F ,G,H) is defined as:

F = dα + α ∧ α − ∂β , G = dβ + α ∧⊳ β − δγ ,
H = dγ + α ∧⊳ γ + {β ∧ β}pf .

(3)
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>>> The 3BF theory

At this point one can construct the so-called 3BF theory.
* For a manifold M4 and the 2-crossed module
(L δ→H

∂→ G,⊳ ,{_ ,_}pf), that gives rise to 3-curvature (F ,G,H),
one defines the 3BF action as

S3BF = ∫
M4

⟨B ∧F⟩g + ⟨C ∧ G⟩h + ⟨D ∧H⟩l . (4)

* 3BF theory is a topological gauge theory,
* it is based on the 3-group structure,
* it is a generalization of an ordinary BF theory for a given Lie

group G.
* Physically relevant models

The constrained 2BF actions for
* Yang-Mills field,
* and Einstein-Cartan gravity,

and constrained 3BF actions describing
* Klein-Gordon field,
* Dirac field,
* Weyl fields,
* and Majorana fields

coupled gravity in the standard way are formulated.
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>>> 3-gauge theory
* Curves are labeled with the elements of G, and the elements are composed as

● ●
g1

ww ●
g2

ww = ● ●
g1g2
ww

.

* Surfaces are labeled with the elements h ∈H. We split the boundary into two
curves, the source curve g1 ∈ G and the target curve g2 ∈ G,

● ●

g1

vv

g2

hh h�� ,

so that the surface h ∈H satisfies:

∂(h) = g2g−11 .

* Volumes are labeled with the elements l ∈ L. We split the boundary into the
source surface ∂−3 (l) = h1 and the target surface ∂+3 (l) = h2, and the common
boundary of h1 and h2 we split into the source curve ∂−2 (l) = g1 and the target
curve ∂+2 (l) = g2,

● ●

g1

��

g2

[[ h1

��
l⇛ ● ●

g1

��

g2

[[ h2

��
,

δ(l) = h2h
−1
1 .
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>>> 3-gauge theory

* Upward composition. The upward composition of 3-morphisms (g1, h1, l1) and
(g1, h2, l2), when they are compatible, when ∂+3 (l1) = ∂

−
3 (l2),

● ●

g1

��

g2

[[ h1

��

l1⇛ ● ●

g1

��

g2

[[ h2

��

l2⇛ ● ●

g1

��

g2

[[ h3

��
= ● ●

g1

��

g2

[[ h1

��

l2l1⇛ ● ●

g1

��

g2

[[ h3

��
,

(g1, h2, l2)#3(g1, h1, l1) = (g1, h1, l2l1) . (5)

* Vertical composition. The vertical composition of two 3-morphisms (g1, h1, l1)
and (g2, h2, l2), when they are compatible, when ∂+2 (l1) = ∂

−
2 (l2),

● ●

g1

{{
g2

oo h1�� l1⇛ ● ●

g1

{{
g2

oo h′1��

● ●

g3

cc
g2oo

h2��

l2⇛ ● ●

g3

cc
g2oo

h′2��
,

(g2, h2, l2)#2(g1, h1, l1) = (g1, h2h1, l2(h2 ⊳′ l1)) . (6)
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>>> 3-gauge theory

* Whiskering of the 3-morphisms with morphisms. Whiskering of a 3-morphism by a
morphism from the left is the composition of a volume l ∈ L and curve g1 ∈ G
from the left, when they are compatible, when ∂+1 (l) = ∂

−
1 (g1),

● ●
g1oo ●

g2

��

g′2

[[ h1

��

l⇛ ● ●
g1oo ●

g2

��

g′2

[[ h2

��
= ● ●

g1g2

{{

g1g
′
2

cc g1⊳h1

��

g1⊳l⇛ ● ●

g1g2

{{

g1g
′
2

cc g1⊳h2

��
,

g1#1(g2, h1, l) = (g1g2, g1 ⊳ h, g1 ⊳ l) . (7)
One can whisker a 3-morphism by a morphism from the right, when they are
compatible, ∂−1 (l) = ∂

+
1 (g2),

● ●

g1

��

g′1

[[ h1

��
●

g2oo l⇛ ● ●

g1

��

g′1

[[ h2

��
●

g2oo = ● ●

g1g2

{{

g′1g2

cc h1

��

l⇛ ● ●

g1g2

{{

g′1g2

cc h2

��
,

(g1, h1, l)#1g2 = (g1g2, h1, l) . (8)
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>>> 3-gauge theory
* Whiskering of 3-morphisms with 2-morphisms. Whiskering of a 3-morphism with a

2-morphisms from below, when they are compatible, ∂+2 (l) = ∂
−
2 (h2),

● ●

g1

{{
g2

oo h1�� l⇛ ● ●

g1

{{
g2

oo h′1��

● ●

g3

cc
g2oo

h2��

1h2⇛ ● ●

g3

cc
g2oo

h2��
,

(g1, h1, l)#2(g2, h2) = (g1, h2h1, h2 ⊳′ l) . (9)

* Whiskering a 3-morphism by 2-morphism from above, when they are compatible,
when ∂−2 (l) = ∂

+
2 (h1),

● ●

g1

{{
g2

oo h1�� 1h1⇛ ● ●

g1

{{
g2

oo h1��

● ●

g3

cc
g2oo

h2��

l⇛ ● ●

g3

cc
g2oo

h′2��
,

(g1, h1)#2(g2, h2, l) = (g1, h2h1, l) . (10)

[3. C:\Program Files\Preliminaries\3-gauge theory.dll]$ _ [9/20]



>>> 3-gauge theory

* The interchanging 3-arrow. The horizontal composition of two 2-morphisms h1

and h2, when they are compatible, when ∂−1 (h1) = ∂+1 (h2),

● ●

g1

vv

g′1

hh h1�� ●

g2

vv

g′2

hh h2�� ,

that results in a 3-morphism l, with source surface and target surfaces

∂−3 (l) = ((g1, h1)#1g
′
2)#2(g1#1(g2, h2)) , ∂+3 (l) = (g

′
1#1(g2, h2))#2((g1, h1)#1g2) .

One obtains,

(g1, h1)#1(g2, h2) = (g1g2, h1g1 ⊳ h2,{h1, g1 ⊳ h2}−1p ) . (11)
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>>> 3-gauge theory

Lemma
Let us consider a triangle, (jkℓ). The edges (jk) , j < k, are labeled
by group elements gjk ∈ G and the triangle (jkℓ) , j < k < ℓ, by element
hjkℓ ∈H.

l● k●
gkl

xx
●j

gjk
ww

gjl

]]
hjkl�� �
����
�

= l● k●
gkl

xx
●j

gjk
ww

∂(hjkl)gklgjk

]]
hjkl�� �
����
�

. (12)

The curve γ1 = gkℓgjk is the source and the curve γ2 = gjℓ is the
target of the surface morphism Σ ∶ γ1 → γ2, labeled by the group
element hjkℓ,

gjℓ = ∂(hjkℓ)gkℓgjk . (13)
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>>> 3-gauge theory

Lemma
Let us consider a tetrahedron, (jkℓm).

m● ●ℓ
gℓmoo ●k

gkℓ

xx
●j

gjk
ww

gjℓ

]]
hjkℓ�� ��
�
��
�

gjm

\\

hjℓm�
 �
���

= (gℓmgjℓ, hjℓm)#2(gℓm#1(gkℓgjk, hjkℓ)) = (gℓmgkℓgjk, hjℓm(gℓm ⊳ hjkℓ)) .

(14)

m● ●ℓ
gℓm

xx
●k

gkℓ

xx

gkm

]]
hkℓm
� ��
�
��
�

●j
gjkoo

gjm

\\
hjkm

��
--
-
--
-

= (gkmgjk, hjkm)#2((gℓmgkℓ, hkℓm)#1gjk) = (gℓmgkℓgjk, hjkmhkℓm) .

(15)

Moving from surface shown on the diagram (14) to the surface shown
on the diagram (15) is determined by the group element ljkℓm,

hjkmhkℓm = δ(ljkℓm)hjℓm(gℓm ⊳ hjkℓ) . (16)
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>>> 3-gauge theory

Lemma (δL)
We consider a 4-simplex, (jkℓmn). We cut the 4-simplex volume along the surface
hjmngmn ⊳ (hjℓmgℓm ⊳ hjkℓ).
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>>> 3-gauge theory

Lemma (δL)
After the upward composition of these 3-morphisms, the obtained
3-morphism is the identity morphism with source and target surface
V1 = V2 = hjmngmn ⊳ (hjℓmgℓm ⊳ hjkℓ),

l−1jℓmn hjℓn ⊳′ {hℓmn, (gmngℓm) ⊳ hjkℓ}p l−1jkℓn(hjkn ⊳′ lkℓmn)ljkmnhjmn ⊳′ (gmn ⊳ ljkℓm) = e .
(17)
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>>> Quantization of the topological 3BF theory

We want to construct a state sum model from the classical S3BF

action by the usual spinfoam quantization procedure.

Z = ∫ DαDβDγDBDCDD exp(i∫
M4

⟨B ∧F⟩g + ⟨C ∧ G⟩h + ⟨D ∧H⟩l) .
(18)

↪ The formal integration over the Lagrange multipliers B, C, and D leads to:

Z =N ∫ DαDβDγ δ(F)δ(G)δ(H) . (19)

↪ Discretization of the 3-connection:
▸ α ∈ A1(M4, g) ↦ gϵ ∈ G coloring the edges ϵ = (jk) ∈ Λ1,
▸ β ∈ A2(M4 , h) ↦ h∆ ∈H coloring the triangles ∆ = (jkℓ) ∈ Λ2,
▸ γ ∈ A3(M4 , l) ↦ lτ ∈ L coloring the tetrahedrons τ = (jkℓm) ∈ Λ3.

∫ Dα ↦ ∏(jk)∈Λ1 ∫G dgjk

∫ Dβ ↦ ∏(jkℓ)∈Λ2 ∫H dhjkℓ

∫ Dγ ↦ ∏(jkℓm)∈Λ3 ∫L dljkℓm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ð↠ The disretization of path integral measures.
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>>> Quantization of the toplogical 3BF theory
↪ The condition δ(F) is disretized as

δ(F) = ∏
(jkℓ)∈Λ2

δG(gjkℓ) , δG(gjkℓ) = δG(∂(hjkℓ) gkℓ gjk g−1jℓ ) . (20)

↪ The condition δ(G) on the fake curvature 3-form reads
δ(G) = ∏

(jkℓm)∈Λ3

δH(hjkℓm) , (21)

δH(hjkℓm) = δH(δ(ljkℓm)hjℓm (gℓm ⊳ hjkℓ)h−1kℓm h−1jkm) . (22)

↪ The condition δ(H) is disretized as
δ(H) = ∏

(jkℓmn)∈Λ4

δL(ljkℓmn) , (23)

δL(ljkℓmn) = δL(l−1jℓmn hjℓn ⊳′ {hℓmn, (gmngℓm) ⊳ hjkℓ}p l−1jkℓn(hjkn ⊳′ lkℓmn)ljkmnhjmn ⊳′ (gmn ⊳ ljkℓm)) .
(24)

...all off this Ô⇒

Z = N ∏
(jk)∈Λ1

∫
G

dgjk ∏
(jkℓ)∈Λ2

∫
H

dhjkℓ ∏
(jkℓm)∈Λ3

∫
L

dljkℓm( ∏
(jkℓ)∈Λ2

δG(gjkℓ))( ∏
(jkℓm)∈Λ3

δH(hjkℓm))( ∏
(jkℓmn)∈Λ4

δL(ljkℓmn)).

(25)
This expression can be made independent of the triangulation if one appropriately

chooses the constant factor N.
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Definition
Let M4 be a compact and oriented combinatorial 4-manifold, and
(L δ→H

∂→ G,⊳ ,{_ ,_}pf) be a 2-crossed module. The state sum of
topological higher gauge theory is defined by

Z = ∣G∣−∣Λ0∣+∣Λ1∣−∣Λ2∣∣H ∣∣Λ0∣−∣Λ1∣+∣Λ2∣−∣Λ3∣ ∣L∣−∣Λ0∣+∣Λ1∣−∣Λ2∣+∣Λ3∣−∣Λ4∣

×(∏(jk)∈Λ1 ∫
G

dgjk)(∏(jkℓ)∈Λ2 ∫
H

dhjkℓ)(∏(jkℓm)∈Λ3 ∫
L

dljkℓm)

×(∏(jkℓ)∈Λ2
δG(∂(hjkℓ) gkℓ gjk g−1jℓ ))(∏(jkℓm)∈Λ3

δH(δ(ljkℓm)hjℓm (gℓm ⊳ hjkℓ)h−1kℓm h−1jkm))

×(∏(jkℓmn)∈Λ4
δL(l−1jℓmn hjℓn ⊳′ {hℓmn, (gmngℓm) ⊳ hjkℓ}p l−1jkℓn(hjkn ⊳′ lkℓmn)ljkmnhjmn ⊳′ (gmn ⊳ ljkℓm))) .

(26)
Here ∣Λ0∣ denotes the number of vertices, ∣Λ1∣ edges, ∣Λ2∣ triangles,
∣Λ3∣ tetrahedrons, and ∣Λ4∣ 4-simplices of the triangulation.
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>>> 1↔ 5 Pachner move

(3)

(2)

(6)

(5)

(4)

1↔ 5

(3)

(2)

(6)

(5)

(4)●(1)

Right side

Z1↔5
right = ∣G∣

−11∣H ∣−4∣L∣−1 ∫
G5

∏
(jk)∈M1

dgjk ∫
H10

∏
(jkℓ)∈M2

dhjkℓ ∫
L10

∏
(jklm)∈M3

dljklm

⋅
⎛
⎝ ∏
(jkℓ)∈M2

δG(gjkℓ)
⎞
⎠
⎛
⎝ ∏
(jkℓm)∈M3

δH(hjkℓm)
⎞
⎠
⎛
⎝ ∏
(jkℓmn)∈M4

δL(ljkℓmn)
⎞
⎠
Zremainder ,

(27)

Left side
Z1↔5
left = ∣G∣

−5∣H ∣0∣L∣−1δL(l23456)Zremainder . (28)

The Zremainder denotes the part of the state sum that is the same on both sides of
the move, and thus irrelevant for the proof of invariance.
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>>> 2↔ 4 and 3↔ 3 Pachner moves

(3)(2)

(1)

(4) (5)

(6)

2↔ 4

(3)(2)

(1)

(4) (5)

(6)

(2)(4)

(1)

(6) (3)

(5)

3↔ 3

(2)(4)

(1)

(6) (3)

(5)
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>>> Synopsis

* 2-crossed modules and 3-gauge theory
* Physically relevant models –The constrained 2BF actions
describing the Yang-Mills field and Einstein-Cartan gravity,
and constrained 3BF actions describing the Klein-Gordon,
Dirac, Weyl and Majorana fields coupled to Yang-Mills fields
and gravity in the standard way.

* Starting from the notion of Lie 3-groups, we generalize the
integral picture of gauge theory to a 3-gauge theory that
involves curves, surfaces, and volumes labeled with elements of
non-Abelian groups.

* The definition of the discrete state sum model of
topological higher gauge theory in dimension d=4.

* We prove that the state sum is well defined, i.e., invariant
under the Pachner moves and thus independent of the chosen
triangulation.
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>>> Synopsis

* 2-crossed modules and 3-gauge theory
* Physically relevant models –The constrained 2BF actions
describing the Yang-Mills field and Einstein-Cartan gravity,
and constrained 3BF actions describing the Klein-Gordon,
Dirac, Weyl and Majorana fields coupled to Yang-Mills fields
and gravity in the standard way.

* Starting from the notion of Lie 3-groups, we generalize the
integral picture of gauge theory to a 3-gauge theory that
involves curves, surfaces, and volumes labeled with elements of
non-Abelian groups.

* The definition of the discrete state sum model of
topological higher gauge theory in dimension d=4.

* We prove that the state sum is well defined, i.e., invariant
under the Pachner moves and thus independent of the chosen
triangulation.

Thank you for your attention!
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